土坝渗漏非接触式红外热像探测方法试验研究

马佳佳, 周仁练, 杨孟, 苏怀智

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (3) : 131-137.

PDF(2088 KB)
PDF(2088 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (3) : 131-137. DOI: 10.11988/ckyyb.20211145
工程安全与灾害防治

土坝渗漏非接触式红外热像探测方法试验研究

  • 马佳佳1,2, 周仁练2, 杨孟2, 苏怀智1,2
作者信息 +

Experimental Study on Leakage Detection of Earth Dam with Infrared Thermography

  • MA Jia-jia1,2, ZHOU Ren-lian2, YANG Meng2, SU Huai-zhi1,2
Author information +
文章历史 +

摘要

渗漏是土坝工程最为常见且危害性极大的典型病害。快速探测与定位渗漏隐患,对保障工程安全具有极为重要的意义。充分考虑土坝渗漏与温度的关联特性,开展了基于红外热像的土坝渗漏非接触式探测方法及其试验研究,在对其基本原理与影响因素予以剖析的基础上,通过设计和搭建试验平台,开展了多种工况下的土坝渗漏红外热像探测试验,充分验证该探测方法可行的同时,明晰了土坝渗漏出口的温度发展规律及红外图像特征,可为土坝渗漏的快速探测和识别提供一定的经验参考。

Abstract

Leakage is the most common and harmful disease in earth dams. Rapid detection and location of the leakage is of great significance to ensure engineering safety. In consideration of the correlation between leakage and temperature of earth dam, we experimentally researched a non-contact detection method of earth dam leakage based on infrared thermography. Having expounded the detection mechanism and the factors affecting the accuracy, we carried out infrared thermal imaging experiments of earth dam leakage under various working conditions on an independently built detection experimental platform. The model experiments fully verified the feasibility of this detection method. Conclusions were also obtained in infrared image feature of earth dam leakage. The research findings offer reference for the rapid detection and recognition of earth dam leakage.

关键词

土坝 / 堤坝 / 渗漏探测 / 红外热像 / 模型试验

Key words

earth rock dam / river embankment / leakage detection / infrared thermography / model experiment

引用本文

导出引用
马佳佳, 周仁练, 杨孟, 苏怀智. 土坝渗漏非接触式红外热像探测方法试验研究[J]. raybet体育在线 院报. 2023, 40(3): 131-137 https://doi.org/10.11988/ckyyb.20211145
MA Jia-jia, ZHOU Ren-lian, YANG Meng, SU Huai-zhi. Experimental Study on Leakage Detection of Earth Dam with Infrared Thermography[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(3): 131-137 https://doi.org/10.11988/ckyyb.20211145
中图分类号: TV698.237   

参考文献

[1] ZHONG Q, WANG L, CHEN S,et al. Breaches of Embankment and Landslide Dams-State of the Art Review[J]. Earth-Science Reviews, 2021(12): 103597.
[2] 李宏恩, 马桂珍, 王 芳, 等. 2000—2018年中国水库溃坝规律分析与对策[J]. 水利水运工程学报, 2021(5): 101-111.
[3] 苏怀智, 周仁练. 土石堤坝渗漏病险探测模式和方法研究进展[J]. 水利水电科技进展, 2022, 42(1): 1-10.
[4] CHEN S, ZHONG Q, SHEN G. Numerical Modeling of Earthen Dam Breach Due to Piping Failure[J]. Water Science and Engineering, 2019, 12(3): 169-178.
[5] 周仁练, 苏怀智, 刘明凯, 等. 基于被动红外热成像的土石堤坝渗漏探测试验研究[J]. 水利学报, 2022, 53(1): 54-67.
[6] 许献磊, 孙帅航, 孙明浩, 等. GPR技术在南水北调工程坝体渗漏探测中的应用[J]. raybet体育在线 院报, 2020, 37(10): 59-63.
[7] 朱德兵. 土坝体隐患弹性波探测中的横波优势[J]. 地球物理学进展, 2008, 23(2): 612-617.
[8] 甘孝清, 肖 庆, 宁 晶. 土石坝渗流热监测理论研究进展[J]. raybet体育在线 院报, 2014, 31(7): 119-124.
[9] HIEN P, LE V. Application of Isotope Tracer Techniques for Assessing the Seepage of the Hydropower Dam at Tri An, South Vietnam[J]. Journal of Radioanalytical & Nuclear Chemistry, 1996, 206(2): 295-303.
[10] 李文忠, 肖国强, 孙卫民, 等.长江堤防土电阻率测试及其与含水率和密实度的相关性研究[J]. raybet体育在线 院报, 2019, 36(10): 131-134.
[11] 龚起民. 车载式隧道表面图像采集与病害检测技术[D]. 北京:北京交通大学, 2020.
[12] 杨玥旻, 闫维新. 基于图像处理的爬壁机器人焊缝识别与跟踪[J]. 机械与电子, 2021, 39(3): 65-68.
[13] 孙保燕,陈 文.三维激光扫描和红外检测融合技术的工程应用[J].raybet体育在线 院报,2020,37(2):170-173.
[14] 余 阳, 赵海龙, 韩来君. 基于红外热成像的山火识别技术研究[J]. 现代电子技术, 2017, 40(24): 77-79.
[15] KYLILI A, FOKAIDES P A, CHRISTOU P, et al. Infrared Thermography (IRT) Applications for Building Diagnostics: A Review[J]. Applied Energy, 2014, 134(1): 531-549.
[16] BALARAS C A, ARGIRIOU A A. Infrared Thermography for Building Diagnostics[J]. Energy & Buildings, 2002, 34(2): 171-183.
[17] JJADIN M S, TAIB S. Recent Progress in Diagnosing the Reliability of Electrical Equipment by Using Infrared Thermography[J]. Infrared Physics & Technology, 2012, 55(4): 236-245.
[18] HUDA A, TAIB S. Application of Infrared Thermography for Predictive/Preventive Maintenance of Thermal Defect in Electrical Equipment[J]. Applied Thermal Engineering, 2013, 61(2): 220-227.
[19] TIIHONEN T. STEFAN-BOLTZMANN. Radiation on Non-convex Surfaces[J]. Mathematical Methods in the Applied Sciences, 1997, 20(1): 47-57.
[20] TEZA G, MARCATO G, CASTELLI E, et al. IRTROCK: A MATLAB Toolbox for Contactless Recognition of Surface and Shallow Weakness of a Rock Cliff by Infrared Thermography[J]. Computers and Geosciences, 2012, 45: 109-118.
[21] DOSHVARPASSAND S, WU C, WANG X. An Overview of Corrosion Defect Characterization Using Active Infrared Thermography[J]. Infrared Physics and Technology, 2018, 96: 366-389.
[22] 江文杰, 曾学文, 施建华. 光电技术[M]. 北京: 科学出版社, 2009.
[23] SUGIURA R, NOGUCHI N, ISHII K. Correction of Low-altitude Thermal Images Applied to Estimating Soil Water Status[J]. Biosystems Engineering, 2007, 96(3): 301-313.
[24] MINEO S, PAPPALARDO G. Rock Emissivity Measurement for Infrared Thermography Engineering Geological Applications[J]. Applied Sciences, 2021, 11(9): 3773.
[25] 李云红, 孙晓刚, 杨幸芳. 红外热像仪测温精度的理论分析[J]. 西安工程科技学院学报, 2007, 21(5): 635-639.

基金

国家重点研发计划课题(2019YFC1510801);国家自然科学基金项目(52239009)

PDF(2088 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map