为验证淤泥电动修复技术去除重金属污染的有效性,以淤泥典型重金属污染物Cd2+为对象,结合低压直流淤泥扰动模拟装置,研究了电场作用下淤泥土的吸附特性及重金属离子扩散迁移规律。结果表明电场作用下淤泥土对Cd2+的饱和吸附量从0.438 mg/g提升至0.498 mg/g。淤泥土的XRD表征证实了矿物晶体的变化导致Zeta电位下降使得吸附能力提升。30 V电压下液相中的Cd2+向固相及电极网的迁移量增加,其中阴极电极网中Cd原子含量由0.05%提升至0.19%,主要原因是液相中Cd2+发生了电絮凝。此外,扰动条件下可以加速Cd2+吸附及电化学反应过程。
Abstract
The aim of this research is to verify the effectiveness of electrokinetic remediation technology in removing heavy metal pollution. The adsorption characteristics and the diffusion and migration of Cd2+ in sediments under electric field were studied by using the low-pressure DC sediment disturbance simulation device. Results manifested that the saturated adsorption of Cd2+ by silt under electric field increased from 0.438 mg/g to 0.498 mg/g. XRD analysis of sediment confirmed that the change of mineral crystal led to the decrease of Zeta potential and the enhancement of adsorption capacity. The migration of Cd2+ to solid phase and electrode network increased at 30 V voltage, and the Cd2+ atom content in cathode electrode network increased from 0.05% to 0.19% mainly due to the electrocoagulation of Cd2+ in liquid phase. In addition, the adsorption and electrochemical reaction of Cd2+ can be accelerated under the condition of disturbance.
关键词
淤泥吸附 /
电场作用 /
重金属污染 /
迁移 /
电化学反应
Key words
sediment adsorption /
electric field /
heavy metal pollution /
migration /
electrochemical reaction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG Y, ZHANG H, ZHANG Z, et al. pH Effect on Heavy Metal Release from a Polluted Sediment[J]. Journal of Chemistry, 2018(1): 1-7.
[2] KAI L, LIU H Y, YU E J, et al. Distribution and Release Mechanism of Heavy Metals in Sediments of Yelang Lake by DGT[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(6): 793-805.
[3] 林 莉,李青云,吴 敏. 河湖疏浚底泥无害化处理和资源化利用研究进展[J]. raybet体育在线
院报,2014,31(10): 80-88.
[4] 栾约生,张 为,石 纲,等. 湖北鄂州城市湖泊底泥重金属空间分布特征与污染评价[J]. raybet体育在线
院报, 2020,37(1): 30-36.
[5] ISLAM M S, HOSSAIN M B, MATIN A, et al. Assessment of Heavy Metal Pollution, Distribution and Source Apportionment in the Sediment from Feni River Estuary, Bangladesh[J]. Chemosphere, 2018, 202(7): 25-32.
[6] 陈秀粉,赵新民,翟德勤,等. 污染水体底泥重金属污染现状及植物修复技术进展[J]. 中国资源综合利用, 2019,37(8):97-102.
[7] FALCIGLIA P P, MALARBI D, GRECO V, et al. Surfactant and MGDA Enhanced Electrokinetic Treatment for the Simultaneous Removal of Mercury and PAHs from Marine Sediments[J]. Separation and Purification Technology, 2017, 175(3): 330-339.
[8] PEDERSEN K B, LEJON T, JENSEN P E, et al. The Influence of Sediment Properties and Experimental Variables on the Efficiency of Electrodialytic Removal of Metals from Sediment[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5312-5321.
[9] 梁明欣. 污染底泥电动力脱水及重金属修复技术研究[D]. 北京:北京化工大学,2020.
[10] MARZIE R, DARYOUSH Y K, ATIEH E. Microbial Fuel Cell-enhanced Electrokinetic Process for Remediation of Chromium from Marine Sediments[J]. Environmental Progress & Sustainable Energy, 2020, 40(1): 13469-13478.
[11] 韩 丁,黎 睿,汤显强,等.污染土壤/底泥电动修复研究进展[J].raybet体育在线
院报,2021,38(1):41-50.
[12] 陈海培,翟 华,阎成浩.长江南京以下深水航道维护疏浚现状及对策研究[J].中国水运·航道科技,2018(2):32-36.
[13] 颜廷玉,马秀兰,顾芳宁,等. Cd在吉林省3种典型土壤上的吸附及其影响因素研究[J]. 农业环境科学学报,2019,38(4):827-834.
[14] KUMAR P S, SATHYASELVABALA V, RAMAKRISHNAN K, et al. Kinetics and Adsorption Equilibrium in the System Aqueous Solution of Copper Ions—Granulated Activated Carbon[J]. Russian Chemical Bulletin, 2010, 59(10): 1859-1864.
[15] 黄木华. 底泥沉积物和消落带土壤对重金属的吸附性能及其机制研究[D]. 重庆:重庆大学,2017.
[16] ZAMAN A C, KAYA F, KAYA C. A Study on Optimum Surfactant to Multiwalled Carbon Nanotube Ratio in Alcoholic Stable Suspensions via UV-Vis Absorption Spectroscopy and Zeta Potential Analysis[J]. Ceramics International, 2020, 46(18): 29120-29129.
[17] XU C Y, ZHOU T T, WANG C L, et al. Aggregation of Polydisperse Soil Colloidal Particles: Dependence of Hamaker Constant on Particle Size[J]. Geoderma, 2020, 359(21):113999-11408.
[18] 杨南如. 碱胶凝材料形成的物理化学基础(Ⅱ)[J]. 硅酸盐学报,1996(4): 209-215.
[19] 杜鹏睿,刘云根,杨思林,等. 农村沟渠水体的磷污染水平对底泥磷释放规律的影响研究[J].环境污染与防治,2021,43(3):276-282.
[20] 高新源,李爱民,刘佩春,等. 电场辅助活性炭吸附法去除水中的Cu2+[J].中国环境科学,2021,41(2):677-683.
基金
国家自然科学基金项目(51979077);江苏省科技计划项目(BE2019121);中国一冶集团有限公司科研基金项目;国网江苏省电力工程咨询有限公司科研项目(821105016)