电场对高含水率淤泥中Cd2+迁移及去除的影响

刘叶, 汪存石, 吴绍凯, 沈文韬, 徐剑波, 白王军, 祝建中

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (2) : 60-66.

PDF(1648 KB)
PDF(1648 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (2) : 60-66. DOI: 10.11988/ckyyb.20210960
水环境与水生态

电场对高含水率淤泥中Cd2+迁移及去除的影响

  • 刘叶1,2, 汪存石1,2, 吴绍凯3, 沈文韬4, 徐剑波5, 白王军6, 祝建中1,2
作者信息 +

Effects of Electric Field on Migration and Removal of Cd2+ in Sediment of High Moisture Content

  • LIU Ye1,2, WANG Cun-shi1,2, WU Shao-kai3, SHEN Wen-tao4, XU Jian-bo5, BAI Wang-jun6, ZHU Jian-zhong1,2
Author information +
文章历史 +

摘要

为验证淤泥电动修复技术去除重金属污染的有效性,以淤泥典型重金属污染物Cd2+为对象,结合低压直流淤泥扰动模拟装置,研究了电场作用下淤泥土的吸附特性及重金属离子扩散迁移规律。结果表明电场作用下淤泥土对Cd2+的饱和吸附量从0.438 mg/g提升至0.498 mg/g。淤泥土的XRD表征证实了矿物晶体的变化导致Zeta电位下降使得吸附能力提升。30 V电压下液相中的Cd2+向固相及电极网的迁移量增加,其中阴极电极网中Cd原子含量由0.05%提升至0.19%,主要原因是液相中Cd2+发生了电絮凝。此外,扰动条件下可以加速Cd2+吸附及电化学反应过程。

Abstract

The aim of this research is to verify the effectiveness of electrokinetic remediation technology in removing heavy metal pollution. The adsorption characteristics and the diffusion and migration of Cd2+ in sediments under electric field were studied by using the low-pressure DC sediment disturbance simulation device. Results manifested that the saturated adsorption of Cd2+ by silt under electric field increased from 0.438 mg/g to 0.498 mg/g. XRD analysis of sediment confirmed that the change of mineral crystal led to the decrease of Zeta potential and the enhancement of adsorption capacity. The migration of Cd2+ to solid phase and electrode network increased at 30 V voltage, and the Cd2+ atom content in cathode electrode network increased from 0.05% to 0.19% mainly due to the electrocoagulation of Cd2+ in liquid phase. In addition, the adsorption and electrochemical reaction of Cd2+ can be accelerated under the condition of disturbance.

关键词

淤泥吸附 / 电场作用 / 重金属污染 / 迁移 / 电化学反应

Key words

sediment adsorption / electric field / heavy metal pollution / migration / electrochemical reaction

引用本文

导出引用
刘叶, 汪存石, 吴绍凯, 沈文韬, 徐剑波, 白王军, 祝建中. 电场对高含水率淤泥中Cd2+迁移及去除的影响[J]. raybet体育在线 院报. 2023, 40(2): 60-66 https://doi.org/10.11988/ckyyb.20210960
LIU Ye, WANG Cun-shi, WU Shao-kai, SHEN Wen-tao, XU Jian-bo, BAI Wang-jun, ZHU Jian-zhong. Effects of Electric Field on Migration and Removal of Cd2+ in Sediment of High Moisture Content[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(2): 60-66 https://doi.org/10.11988/ckyyb.20210960
中图分类号: X522   

参考文献

[1] ZHANG Y, ZHANG H, ZHANG Z, et al. pH Effect on Heavy Metal Release from a Polluted Sediment[J]. Journal of Chemistry, 2018(1): 1-7.
[2] KAI L, LIU H Y, YU E J, et al. Distribution and Release Mechanism of Heavy Metals in Sediments of Yelang Lake by DGT[J]. Stochastic Environmental Research and Risk Assessment, 2020, 34(6): 793-805.
[3] 林 莉,李青云,吴 敏. 河湖疏浚底泥无害化处理和资源化利用研究进展[J]. raybet体育在线 院报,2014,31(10): 80-88.
[4] 栾约生,张 为,石 纲,等. 湖北鄂州城市湖泊底泥重金属空间分布特征与污染评价[J]. raybet体育在线 院报, 2020,37(1): 30-36.
[5] ISLAM M S, HOSSAIN M B, MATIN A, et al. Assessment of Heavy Metal Pollution, Distribution and Source Apportionment in the Sediment from Feni River Estuary, Bangladesh[J]. Chemosphere, 2018, 202(7): 25-32.
[6] 陈秀粉,赵新民,翟德勤,等. 污染水体底泥重金属污染现状及植物修复技术进展[J]. 中国资源综合利用, 2019,37(8):97-102.
[7] FALCIGLIA P P, MALARBI D, GRECO V, et al. Surfactant and MGDA Enhanced Electrokinetic Treatment for the Simultaneous Removal of Mercury and PAHs from Marine Sediments[J]. Separation and Purification Technology, 2017, 175(3): 330-339.
[8] PEDERSEN K B, LEJON T, JENSEN P E, et al. The Influence of Sediment Properties and Experimental Variables on the Efficiency of Electrodialytic Removal of Metals from Sediment[J]. Journal of Environmental Chemical Engineering, 2017, 5(6): 5312-5321.
[9] 梁明欣. 污染底泥电动力脱水及重金属修复技术研究[D]. 北京:北京化工大学,2020.
[10] MARZIE R, DARYOUSH Y K, ATIEH E. Microbial Fuel Cell-enhanced Electrokinetic Process for Remediation of Chromium from Marine Sediments[J]. Environmental Progress & Sustainable Energy, 2020, 40(1): 13469-13478.
[11] 韩 丁,黎 睿,汤显强,等.污染土壤/底泥电动修复研究进展[J].raybet体育在线 院报,2021,38(1):41-50.
[12] 陈海培,翟 华,阎成浩.长江南京以下深水航道维护疏浚现状及对策研究[J].中国水运·航道科技,2018(2):32-36.
[13] 颜廷玉,马秀兰,顾芳宁,等. Cd在吉林省3种典型土壤上的吸附及其影响因素研究[J]. 农业环境科学学报,2019,38(4):827-834.
[14] KUMAR P S, SATHYASELVABALA V, RAMAKRISHNAN K, et al. Kinetics and Adsorption Equilibrium in the System Aqueous Solution of Copper Ions—Granulated Activated Carbon[J]. Russian Chemical Bulletin, 2010, 59(10): 1859-1864.
[15] 黄木华. 底泥沉积物和消落带土壤对重金属的吸附性能及其机制研究[D]. 重庆:重庆大学,2017.
[16] ZAMAN A C, KAYA F, KAYA C. A Study on Optimum Surfactant to Multiwalled Carbon Nanotube Ratio in Alcoholic Stable Suspensions via UV-Vis Absorption Spectroscopy and Zeta Potential Analysis[J]. Ceramics International, 2020, 46(18): 29120-29129.
[17] XU C Y, ZHOU T T, WANG C L, et al. Aggregation of Polydisperse Soil Colloidal Particles: Dependence of Hamaker Constant on Particle Size[J]. Geoderma, 2020, 359(21):113999-11408.
[18] 杨南如. 碱胶凝材料形成的物理化学基础(Ⅱ)[J]. 硅酸盐学报,1996(4): 209-215.
[19] 杜鹏睿,刘云根,杨思林,等. 农村沟渠水体的磷污染水平对底泥磷释放规律的影响研究[J].环境污染与防治,2021,43(3):276-282.
[20] 高新源,李爱民,刘佩春,等. 电场辅助活性炭吸附法去除水中的Cu2+[J].中国环境科学,2021,41(2):677-683.

基金

国家自然科学基金项目(51979077);江苏省科技计划项目(BE2019121);中国一冶集团有限公司科研基金项目;国网江苏省电力工程咨询有限公司科研项目(821105016)

PDF(1648 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map