根据中国提出的碳达峰、碳中和目标,将SSPs-RCPs分为“双碳”情景(SSP1-1.9、SSP1-2.6、SSP2-4.5、SSP4-3.4、SSP4-6.0)和高碳情景(SSP3-7.0、SSP5-8.5)。采用SWAT水文模型,分析21世纪近期(2021—2040年)、中期(2041—2060年)和末期(2081—2100年)抚河流域径流变化趋势,以期为“双碳”目标下的流域水资源管理提供建议。研究表明:①1961—2019年,抚河流域实测年平均气温以0.18 ℃/(10 a)的速率显著上升;年降水以-32.8 mm/(10 a)速率显著下降。②“双碳”情景下,相较基准期(1995—2014年),近期、中期、末期抚河流域年均气温增幅依次加大;年降水量呈波动上升趋势。同期年平均流量呈上升趋势;9月份至次年2月份平均流量增加,3—7月份平均流量呈下降趋势;日流量的丰水极值下降,枯水极值则有所增加,水文极端事件发生可能性降低。③与“双碳”情景对比,高碳情景下年均气温增幅更大;近期和末期年降水增幅明显;年平均流量整体增幅大于“双碳”情景,5—10月份平均流量增幅明显;丰水极值也呈增加趋势。
Abstract
In line with the carbon peaking and carbon neutrality, known as the dual-carbon goal of China, we divided SSP-RCPs into the dual-carbon scenario (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP4-3.4, and SSP4-6.0) and the high-carbon scenario (SSP3-7.0, and SSP5-8.5). In the aim of offering suggestions for basin water resources management under the scenario of dual-carbon goal, we analyzed the streamflow change in Fuhe River Basin (FRB) in the near-term (2021-2040), mid-term (2041-2060) and end-term (2081-2100) in the 21st century by using SWAT hydrological model. Results demonstrate that: 1) From 1961 to 2019, the annual average temperature climbed markedly at a rate of 0.18 ℃/(10 a), while the annual precipitation dropped significantly at -32.8 mm/(10 a). 2) Under the dual-carbon scenario, the increment of annual average temperature in the FRB is projected to intensify with the passing of time compared with that in base period (1995-2014). Annual average discharge is projected to fluctuate upwardly; monthly average discharge is expected to increase from September to next February but a decline from March to July. The extreme high discharge is expected to increase while extreme low discharge decline, indicating the alleviation of hydrological extremes. 3) In high-carbon scenario, the annual average temperature is estimated to rise more significantly than that in the double-carbon scenario; but the annual precipitation would fall in the near-term and the end-term. The increment of annual average discharge is projected to be greater than that in double-carbon scenario with average temperature rising more sharply from May to October. In addition, extreme high discharges in all three periods are projected to increase.
关键词
径流变化 /
气温降水变化 /
“双碳”情景 /
未来预估 /
抚河流域
Key words
streamflow change /
temperature and precipitation change /
double-carbon scenario /
projection /
Fuhe River Basin
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IPCC, 2021: Summary for Policymakers. In: Climate Change 2021[R]. Geneva: IPCC, 2021.
[2] STOCKER T F, QIN D H, PLATTNER G K, et al. Climate Change 2013: The Physical Science Basis[M]. Cambridge: Cambridge University Press, 2013: 1535.
[3] 张永生,巢清尘,陈 迎,等.中国碳中和:引领全球气候治理和绿色转型[J].国际经济评论,2021(3):9-26,4.
[4] DAI A G, QIAN T T, TRENBERTH K E,et al. Changes in Continental Freshwater Discharge from 1948 to 2004[J]. Journal of Climate, 2009, 22(10): 2773-2792.
[5] WANG W G, SHAO Q X, YANG T, et al. Quantitative Assessment of the Impact of Climate Variability and Human Activities on Streamflow Changes: A Case Study in Four Catchments of the Haihe River Basin, China[J]. Hydrological Processes, 2013, 27(8): 1158-1174.
[6] XING W Q, WANG W G, ZOU S, et al. Projection of Future Streamflow Change Using Climate Elasticity Method Derived from Budyko Framework in Major Basins across China[J]. Global & Planetary Change, 2018, 162: 120-135.
[7] 夏 军,刘春蓁,任国玉.气候变化对我国水资源影响研究面临的机遇与挑战[J].地球科学进展,2011,26(1): 1-12.
[8] 郭 华,张 奇.近50年来长江与鄱阳湖水文相互作用的变化[J].地理学报,2011,66(5):609-618.
[9] 刘剑宇,张 强,邓晓宇,等.气候变化和人类活动对鄱阳湖流域径流过影响的定量分析[J].湖泊科学,2016,28(2): 432-443.
[10] 赵军凯,李立现,李九发,等.人类活动对鄱阳湖水位变化的影响[J].水文,2020,40(4):53-60.
[11] SU B D, HUNG J L, ZENG X F, et al. Impacts of Climate Change on Streamflow in the Upper Yangtze River Basin[J]. Climatic Change, 2017, 141(3): 533-546.
[12] GAO C, SU B D, KRYSANOVA V, et al. A 439-year Simulated Daily Discharge Dataset (1861-2299) for the Upper Yangtze River, China[J]. Earth System Science Data,2020, 12(1): 3877-402.
[13] O’NEILL B C, TEBALDI C, VAN Vuuren D P, et al. The Scenario Model Intercomparison Project (Scenario MIP) for CMIP6[J]. Geoscientific Model Development, 2016, 9(9): 3461-3482.
[14] RIAHI K, VAN VUUREN D P, KRIEGLER E, et al. The Shared Socioeconomic Pathways and Their Energy, Land Use, and Greenhouse Gas Emissions Implications: An Overview[J]. Global Environmental Change, 2017, 42: 153-168.
[15] 姜 彤,王艳君,苏布达,等.全球气候变化中的人类活动视角:社会经济情景的演变[J]. 南京信息工程大学学报(自然科学版), 2020, 12(1): 68-80.
[16] 朱圣男,刘卫林,吴德胜,等.基于CMIP5模式和SDSM的抚河流域未来气候要素模拟与预估[J].南昌工程学院学报,2020,39(1): 32-37.
[17] 姜淞川,陆建忠,陈晓玲,等.基于LSTM网络鄱阳湖抚河流域径流模拟研究[J].华中师范大学学报(自然科学版),2020,54(1): 128-139.
[18] 王超兴,刘阳容,周 峰.径流系列一致性分析方法研究[J].甘肃水利水电技术,2019,55(12):13-16.
[19] 翁宇威,蔡闻佳,王 灿.共享社会经济路径(SSPs)的应用与展望[J].气候变化研究进展,2020,16(2):215-222.
[20] ARNOLD J G,ALLEN P M, BERNHARDT G.A Comprehensive Surface-Ground Water Flow Model[J]. Journal of Hydrology, 1993, 142: 47-69.
[21] 吴喜军,董 颖.基于SWAT模型的煤炭开采区河道径流变化识别[J].环境科学与技术,2018,41(6):175-180.
[22] 白琪阶,宋志松,等.基于SWAT模型定量分析自然因素与人为因素对水文系统的影响:以漳卫南运河流域为例[J].自然资源学报,2018,33(9): 1575-1587.
[23] LI Dan, CHRISTAKOS G, DING Xin-xin, et al. Adequacy of TRMM Satellite Rainfall Data in Driving the SWAT Modeling of Tiao Xi Catchment(Taihu Lake Basin, China)[J]. Journal of Hydrology, 2018, 55(6): 1139-1152.
[24] 黄金龙. 长江寸滩以上流域径流变化研究[D].南京:南京信息工程大学,2014.
[25] 毛安琪. 基于SWAT模型的土地利用演变对抚河流域非点源污染研究[D].南昌:南昌大学,2020.
[26] 高 超,刘 青,苏布达,等.不同尺度和数据基础的水文模型适用性评估研究: 淮河流域为例[J]. 自然资源学报, 2013, 28(10): 1765-1777.
[27] 曹丽娟,董文杰,张 勇,等.未来气候变化对黄河和长江流域极端径流影响的预估研究[J]. 大气科学, 2013, 37(3): 634-644.
[28] 张建成.基于多变量M-K检验的大凌河流域降水趋势分析[J].黑龙江水利技,2020,48(1): 29-33.
[29] 田 鹏. 气候与土地利用变化对径流的影响研究[D].杨凌:西北农林科技大学,2012.
[30] 张静文,郭家力,刘 佳,等.鄱阳湖流域入湖径流时空变化预测[J].南水北调与水利科技,2016,14(5):41-48,70.
[31] 刘剑宇,张 强,邓晓宇,等.气候变化和人类活动对鄱阳湖流域径流过程影响的定量分析[J].湖泊科学,2016,28(2):432-443.
[32] 刘子豪,陆建忠,黄建武,等.基于CMIP5模式鄱阳湖流域未来参考作物蒸散量预估[J].湖泊科学,2019,31(6):1685-1697.
基金
教育事业发展(地方教育附加)-2021年双一流-人才启动费-2021r032(1521582101003);江苏省雷电竞rayget下载
教学改革课题(KYCX22_1129);中国气象局气候变化专项(CCSF)