基于多种群引力粒子群算法的金沙江下游—三峡梯级水库群优化调度

汪涛, 徐杨, 刘亚新, 卢佳, 马皓宇

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (12) : 30-36,58.

PDF(1396 KB)
PDF(1396 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (12) : 30-36,58. DOI: 10.11988/ckyyb.20221439
水资源

基于多种群引力粒子群算法的金沙江下游—三峡梯级水库群优化调度

  • 汪涛1,2, 徐杨1,2, 刘亚新1,2, 卢佳1,2, 马皓宇1,2
作者信息 +

Optimal Operation of Cascade Reservoirs in the Lower Reaches of Jinsha River to the Three Gorges Based on Multi-group Gravitational Particle Swarm Algorithm

  • WANG Tao1,2, XU Yang1,2, LIU Ya-xin1,2, LU Jia1,2, MA Hao-yu1,2
Author information +
文章历史 +

摘要

金沙江下游—三峡已形成六库联合调度格局,调度维数增多,约束庞杂交织,优化目标多样,给调度方案制定带来极大困难。针对传统粒子群算法求解调度模型寻优能力不足的难题,提出多种群引力粒子群算法,建立优化调度模型并应用改进算法求解。算法测试和应用结果表明,多种群引力粒子群算法寻优性能更加先进,更适用于求解梯级水库优化调度问题。实例表明,上游龙头电站通过减少自身发电量可以使下游电站和梯级发电量增加。

Abstract

From the lower reaches of the Jinsha River to the Three Gorges, a complex joint scheduling pattern comprising six reservoirs has emerged. This pattern is characterized by an expanded scope of scheduling, numerous and diverse constraints, and a range of optimization objectives. Consequently, formulating appropriate scheduling schemes has become particularly challenging. Recognizing the limitations of traditional particle swarm algorithms in addressing this scheduling model, we propose a multi-group gravitational particle swarm algorithm to enhance the optimization capabilities of the scheduling model. To this end, a multi-scale and multi-objective nested scheduling model is established, and the improved algorithm is applied to solve it. The test and application results demonstrate that the multi-group gravitational particle swarm algorithm exhibits superior optimization performance compared to other approaches. Moreover, it is more suitable for achieving optimal operation of cascade reservoirs. A case study further illustrates that the upstream leading power station can enhance the generation of downstream power stations and cascade stations by reducing its own power generation capacity.

关键词

水库群优化调度 / 粒子群算法 / 算法改进 / 梯级水库 / 金沙江下游 / 三峡

Key words

optimal operation of reservior groups / particle swarm optimization / algorithm improvement / cascade reservoir / lower Jinsha River / Three Gorges

引用本文

导出引用
汪涛, 徐杨, 刘亚新, 卢佳, 马皓宇. 基于多种群引力粒子群算法的金沙江下游—三峡梯级水库群优化调度[J]. raybet体育在线 院报. 2023, 40(12): 30-36,58 https://doi.org/10.11988/ckyyb.20221439
WANG Tao, XU Yang, LIU Ya-xin, LU Jia, MA Hao-yu. Optimal Operation of Cascade Reservoirs in the Lower Reaches of Jinsha River to the Three Gorges Based on Multi-group Gravitational Particle Swarm Algorithm[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(12): 30-36,58 https://doi.org/10.11988/ckyyb.20221439
中图分类号: TV737   

参考文献

[1] 徐 杨, 汪永怡, 杜康华, 等. 金沙江下游—三峡梯级水库群联合优化调度决策支持系统研究[J]. 长江技术经济, 2020, 4(1): 29-34.
[2] 汤正阳, 张 迪, 林俊强, 等. 基于循环神经网络算法的水库调度模拟[J]. 水电能源科学, 2021, 39(5): 83-86, 70.
[3] 张海荣,姚华明,鲍正风,等.金中、雅砻江梯级水库与金下梯级联合优化调度建模及应用Ⅰ:联合优化调度潜力分析[J].raybet体育在线 院报,2022,39(9):30-37.
[4] 刘亚新, 姚华明, 徐 杨, 等. 白鹤滩蓄水对金沙江下游梯级水库消落期调度影响分析[J]. 水电能源科学, 2021, 39(12): 84-88.
[5] 杨俊杰, 周建中, 方仍存, 等. MOPSO算法及其在水库优化调度中的应用[J]. 计算机工程, 2007, 33(18): 249-250, 264.
[6] 郭生练, 何绍坤, 陈柯兵, 等. 长江上游巨型水库群联合蓄水调度研究[J]. 人民长江, 2020, 51(1): 6-10, 35.
[7] REN G, STACHURSKI J. Dynamic Programming with Value Convexity[J]. Automatica, 2021, 130: 109641.
[8] LI J, SUN Y, HOU S. Particle Swarm Optimization Algorithm with Multiple Phases for Solving Continuous Optimization Problems[J]. Discrete Dynamics in Nature and Society, 2021, Doi: 10.1155/2021/8378579.
[9] THAHER T,CHANTAR H,TOO J,et al. Boolean Particle Swarm Optimization with Various Evolutionary Population Dynamics Approaches for Feature Selection Problems[J]. Expert Systems With Applications, 2022, 195: 116550.
[10]CANTINI R,MAROZZO F,MAZZA S,et al.A Weighted Artificial Bee Colony Algorithm for Influence Maximization[J]. Online Social Networks and Media,2021,26:100167.
[11]WANG Y N. Study on Neural Network Optimizing Algorithms Based on Improved Wolf Swarm Algorithms[J]. Journal of Physics: Conference Series, Doi: 10.1088/1742-6596/1992/2/022136.
[12]YE T, WANG H, WANG W, et al. Artificial Bee Colony Algorithm with an Adaptive Search Manner and Dimension Perturbation[J]. Neural Computing and Applications, 2022, 34(19): 16239-16253.
[13]LAI X, LI C, ZHANG N, et al. A Multi-objective Artificial Sheep Algorithm[J]. Neural Computing and Applications, 2019, 31(8): 4049-4083.
[14]ALI KHAN T,LING S H.A Novel Hybrid Gravitational Search Particle Swarm Optimization Algorithm[J]. Engineering Applications of Artificial Intelligence,2021,102:104263.
[15]VAZE R, DESHMUKH N, KUMAR R, et al. Development and Application of Quantum Entanglement Inspired Particle Swarm Optimization[J]. Knowledge-Based Systems, 2021, 219: 106859.
[16]XIE C, ZHANG F. A New Sequence Optimization Algorithm Based on Particle Swarm for Machine Learning[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(5): 2601-2619.
[17]OCAMPO E,LIU C-H,KUO C-C.Performance Analysis of Partitioned Step Particle Swarm Optimization in Function Evaluation[J]. Applied Sciences,2021,11(6):2670.
[18]GAO R, JIANG H. Fuzzy Control Mathematical Modelling Method Based on Dynamic Particle Swarm Optimisation Training[J]. International Journal of Innovative Computing and Applications, 2021, 12(1): 48.
[19]WANG S, ZHU J, SHEN X, et al. Research on Particle Swarm Optimization Algorithm[J]. Journal of Physics: Conference Series, 2021, 1827(1): 012151.
[20]汪 涛. 基于水文变异的梯级水库群联合多目标生态调度及系统架构设计[D].武汉:华中科技大学,2023.
[21]WANG T, MO L, SHEN Q, et al. Multi-objective Ecological Operation of Cascade Reservoirs Based on MGCL-PSO Algorithm[J]. IOP Conference Series: Earth and Environmental Science, 2020, 612(1): 012025.
[22]STEENKAMP C, ENGELBRECHT A P. A Scalability Study of the Multi-guide Particle Swarm Optimization Algorithm to Many-objectives[J]. Swarm and Evolutionary Computation, 2021, Doi: 10.1016/j.swevo.2021.100943.
[23]RYTER R,HANNE T,DORNBERGER R.Effects of Noisy Multiobjective Test Functions Applied to Evolutionary Optimization Algorithms[J]. Journal of Advances in Information Technology,2020,Doi:10.12720/jait.11.3.128-134.
[24]CHEN H T, LI A L, WANG W C, et al. The Decision of an Eco-friendly Reservoir Operation Scheme Based on a Variable Set[J]. Water, 2021, 13(12): 1694.
[25]JIN W,WANG Y,CHANG J,et al. Multi-objective Synergetic Reservoir Operation in a Sediment-Laden River[J]. Journal of Hydrology,2021,599:126295.
[26]曾 昱,周建中,鲍正风,等.金沙江下游—三峡梯级水库群调度运行补偿电量分配[J].水电能源科学,2020,38(8):51-54.
[27]YUAN W, YU X, SU C, et al. A Multi-timescale Integrated Operation Model for Balancing Power Generation, Ecology, and Water Supply of Reservoir Operation[J]. Energies, 2020, 14(1): 47.[28]FENG Y,XU J,HONG Y,et al.Reservoir Scheduling Using a Multi-objective Cuckoo Search Algorithm under Climate Change in Jinsha River,China[J].Water,2021,13(13):1803.
[29]彭利鸿, 周建中, 黄竟择, 等. 适应电网需求的三峡水库汛期洪水资源利用研究[J]. 水电能源科学, 2021, 39(8): 76-80.
[30]张海荣,姚华明,汤正阳,等.雅砻江和金沙江中下游梯级水库联合优化调度建模及应用Ⅱ: 联合优化调度规则分析[J].raybet体育在线 院报,2022,39(9):38-42,55.

基金

国家重点研发计划项目(2019YFC0409000)

PDF(1396 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map