随着西部大开发战略的快速实施,地下工程越来越多,为保护生态环境、降低工程造价,将开挖出的强风化岩进行破碎后,掺入一定比例的黄土、水泥、膨润土和泵送剂进行固化改良作为流态填筑材料。以西北地区某基坑回填工程为依托,通过正交设计,对不同配比的流态固化土进行压缩特性试验研究,得到各因素的最优配比,分析了强风化岩流态固化土压缩模量的影响因素及其显著性大小,并对强风化岩流态固化土的微观变化机理和水稳定性进行研究。结果表明:对压缩模量影响最显著的因素是泵送剂,其次是强风化岩粗骨料掺量;各因素掺量对压缩模量影响的主次顺序为:泵送剂→强风化岩粗骨料→膨润土→水泥→黄土→强风化岩细骨料;改良试样浸水后压缩模量随龄期增长,下降幅值逐渐减小,表明其水稳定性和整体性能显著提高;通过微观分析得到泵送剂掺量为0.4%时,试样胶结性能较好。研究结果对评价强风化岩作为流态填筑材料可行性具有一定的参考价值。
Abstract
The implementation of the western development strategy has led to a surge in underground engineering projects. To protect ecological environment and reduce engineering costs, crushed strongly weathered rock is utilized in combination with loess, cement, bentonite, and pumping agent to create solidified and improved fluid filling materials. Based on a foundation pit backfilling project in northwest China, compression tests were conducted on fluid-solidified soil with varying proportions using orthogonal design. The optimal proportions of different factors were determined. The influencing factors and their significance on the compressive modulus of fluid-solidified soil made from strongly weathered rock were analyzed. Additionally, the microstructural changes and water stability of fluid-solidified soil were also investigated. Results demonstrate that the pumping agent is the most significant factor affecting the compressive modulus, followed by the dosage of coarse aggregate of strongly weathered rock. The influence of various factors on the compressive modulus can be ranked in the following order from large to small: pumping agent dosage, coarse aggregate content, bentonite dosage, cement dosage, loess dosage, and fine aggregate content. Moreover, the reduction rate of compressive modulus of improved samples decreases with age after being immersed in water. This indicates significant improvements in water stability and overall performance. Microscopic analysis reveals that a pumping agent dosage of 0.4% yields better sample cementation. The research findings hold valuable reference for evaluating the feasibility of using strongly weathered rock as fluid filling material.
关键词
强风化岩 /
流态固化土 /
正交试验 /
压缩特性 /
水稳定性 /
微观结构 /
显著性分析
Key words
strongly weathered rock /
fluid-solidified soil /
orthogonal test /
compression characteristics /
water stability /
microstructure /
significance analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵明华,邓觐宇,曹文贵.红砂岩崩解特性及其路堤填筑技术研究[J].中国公路学报,2003,16(3):1-5.
[2] 朱彦鹏, 王 浩, 刘东瑞, 等. 基于正交设计的风化砂岩流态固化土抗剪强度试验研究[J]. 岩土工程学报, 2022, 44(增刊1): 46-51.
[3] NAGANATHAN S, RAZAK H A, HAMID S N A. Properties of Controlled Low-Strength Material Made Using Industrial Waste Incineration Bottom Ash and Quarry Dust[J]. Materials & Design, 2012, 33: 56-63.
[4] ZHEN G, ZHOU H, ZHAO T,et al. Performance Appraisal of Controlled Low-Strength Material Using Sewage Sludge and Refuse Incineration Bottom Ash[J]. Chinese Journal of Chemical Engineering, 2012, 20(1): 80-88.
[5] YAN D Y S,TANG I Y,LO I M C.Development of Controlled Low-Strength Material Derived from Beneficial Reuse of Bottom Ash and Sediment for Green Construction[J].Construction and Building Materials,2014,64:201-207.
[6] MNEINA A, SOLIMAN A M, AHMED A, et al. Engineering Properties of Controlled Low-Strength Materials Containing Treated Oil Sand Waste[J]. Construction and Building Materials, 2018, 159: 277-285.
[7] 王浩宇, 许金余, 王 鹏, 等. 水-动力耦合作用下红砂岩力学性质及能量机制研究[J]. 岩土力学, 2016, 37(10): 2861-2868, 2876.
[8] 郭慧敏. 饱水-风干循环作用下砂岩力学性质劣化规律[J]. raybet体育在线
院报, 2020, 37(1): 90-94.
[9] 黄 瑞, 张孝斌, 朱彦鹏, 等. 红砂岩浮力折减系数研究[J]. 水利与建筑工程学报,2022,20(2):15-21,26.
[10]李 旭,张鹏超.循环加卸载下黄砂岩力学特性和能量演化规律[J].raybet体育在线
院报,2021,38(4):124-131.
[11]HOU R, ZHANG K, TAO J, et al. A Nonlinear Creep Damage Coupled Model for Rock Considering the Effect of Initial Damage[J]. Rock Mechanics and Rock Engineering, 2019, 52(5): 1275-1285.[12]宋勇军, 陈佳星, 张磊涛, 等. 干湿循环作用下受荷砂岩损伤劣化特性研究[J]. raybet体育在线
院报, 2021, 38(9): 133-140.
[13]MA C, ZHAN H B, YAO W M, et al. A New Shear Rheological Model for a Soft Interlayer with Varying Water Content[J]. Water Science and Engineering, 2018, 11(2): 131-138.
[14]WANG X, HU B, TANG H, et al. A Constitutive Model of Granite Shear Creep under Moisture[J]. Journal of Earth Science, 2016, 27(4): 677-685.
[15]杜登峰, 林寰宇, 叶雄威, 等. 粉细砂土压缩特性试验研究[J]. 路基工程, 2022(2): 84-88.
[16]张莎莎, 杨晓华, 王明皎, 等. 泥质软岩土石混合料弃渣路用性能研究[J]. 公路交通科技, 2015, 32(2): 55-59.
[17]孟祥连, 赵晓彦, 范智浩, 等. 昆明泥炭质土地铁盾构等代层压缩模量试验研究[J]. 工程地质学报, 2017, 25(6): 1617-1623.
[18]王章琼, 高 云, 沈 雷, 等. 石灰改性红砂岩残积土工程性质试验研究[J]. 工程地质学报, 2018, 26(2): 416-421.
[19]庄心善, 王子翔, 杨文博. 粉煤灰-天然砂改良膨胀土强度特性试验研究[J]. raybet体育在线
院报, 2019, 36(8): 86-89, 96.
[20]王 涛,刘斯宏,郑守仁,等.掺复合浆液堆石料压缩特性试验研究[J].岩土力学,2019,40(4):1420-1426.
[21]张渭军, 王永胜, 马 滔. 基于正交设计的红层软岩改良土压缩模量试验研究[J]. 地震工程学报, 2022, 44(2): 264-269.
[22]刘文白, 张恩槐. 木质素固化疏浚土的压缩特性研究[J]. raybet体育在线
院报, 2017, 34(4): 83-86.
[23]庄心善,王俊翔,王 康,等.风化砂改良膨胀土的动力特性研究[J]. 岩土力学,2018,39(增刊2):149-156.
[24]GB/T 50123—2019,土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
[25]LIU J L, MA H Y, LI Q, et al. Study on Optimization of High Performance Concrete Admixtures[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(2): 206-210.
[26]CHAI J, NEGAMI T, AIGA K, et al. Effect of Pore Water Chemistry on Anisotropic Behavior of Clayey Soil and Possible Application in Underground Construction[J]. Underground Space, 2016, 1(2): 114-123.
基金
国家自然科学基金面上项目(51978321);国家重点研发计划项目(2019YFD1101004);教育部长江学者和创新团队支持计划项目(IRT_17R51)