为了定量评估荆江三口、湘资沅澧四水以及区间来水洪水入湖时洞庭湖内部超额洪量分布情况,以长江干流螺山站、东洞庭湖七里山站、南洞庭湖鹿角站、西洞庭湖南咀站及小河咀站等分别作为区域出口控制断面,建立洞庭湖洪水水文模型,利用1996年、1998年、2017年典型洪水数据率定参数,计算三峡水库运行前后再现1954年洪水(长江防御目标洪水)时洞庭湖内部超额洪量分布情况。研究结果表明三峡水库调洪作用明显,但遭遇目标洪水时城陵矶附近仍有215亿m3超额洪量,且洞庭湖要承担143亿m3超额洪量,其中西洞庭湖、南洞庭湖、东洞庭湖分别承担26亿、62亿、55亿m3超额洪量,该结果与西、南、东洞庭湖区蓄洪垸蓄洪总量相当。本研究结果可为长江中游防洪布局优化提供技术参考。
Abstract
To quantitatively assess the distribution of excess flood volume in Dongting Lake during the inflow of floodwaters from the Jingjiang River's three diversion outlets, as well as the Xiangjiang River, Yuanjiang River, Zijiang River, and Lishui River, we establish a regional flood routing model. Our model focuses on key control sections, namely the Luoshan station in the Yangtze River's main stream, the Qilishan station in East Dongting Lake, the Lujiao station in South Dongting Lake, and the Nanzui and Xiaohezui stations in West Dongting Lake. By calibrating the parameters using typical flood data from 1996, 1998, and 2017, we calculate the distribution of excess flood volume within Dongting Lake during the 1954 flood (defense target flood for Yangtze River) before and after the Three Gorges operation. The results highlight the apparent flood regulation effect of the Three Gorges reservoir. However, even when facing the target flood, an excess flood volume of 21.5 billion m3 remains near Chenglingji, with Dongting Lake bearing an excess of 14.3 billion m3, among which the West Dongting Lake, South Dongting Lake, and East Dongting Lake bear excess flood volumes of 2.6 billion m3, 6.2 billion m3, and 5.5 billion m3, respectively. This result is equivalent to the total flood storage volume of the storage embankments in the Dongting Lake area. The findings serve as a technical reference for optimizing flood control layout in the middle reach of the Yangtze River.
关键词
防洪工程 /
超额洪量 /
水文学模型 /
洪水分配 /
洞庭湖
Key words
flood control works /
excess flood volume /
hydrological model /
flood distribution /
Dongting lake
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 沈新平.新形势下洞庭湖综合治理与保护[C]∥首届中国湖泊论坛论文集. 南京:东南大学出版社,2011: 141-146.
[2] 王克英. 洞庭湖治理与开发[M]. 长沙: 湖南出版社, 1998: 122.
[3] 胡春宏, 张双虎. 论长江开发与保护策略[J]. 人民长江, 2020, 51(1): 1-5.
[4] 王小飞,和振之.上游水库调度下长江中下游超额洪量的空间分布[J].人民长江,2020,51(6):38-42, 153.
[5] 邹冰玉,李世强.大湖演算模型在螺山站单值化后的适应性分析[J].水文,2011,31(增刊1):140-142, 147.
[6] 李世强, 邹红梅. 长江中游螺山站水位流量关系分析[J]. 人民长江, 2011, 42(6): 87-89.
[7] 刘晓群, 卢 翔. 长江中游防洪三大问题[J]. 湖南水利水电, 2002(6): 21-23.
[8] 宁 磊. 长江中下游防洪形势变化历程分析[J]. raybet体育在线
院报, 2018, 35(6): 1-5, 18.
[9] 殷瑞兰. 长江中游洪水位变化初探[J]. raybet体育在线
院报, 2002, 19(1): 48-51.
[10] 张有兴, 刘晓群, 卢 翔. 长江中下游洪水模拟研究[J]. 湖南水利水电, 2003(5): 17-19.
[11] 葛维亚. 水文“单值化”史话[J]. 人民长江, 2007, 38(8): 130-131, 180.
[12] MAIDMEN D R. 水文学手册[M]. 张建云,译. 北京: 科学出版社, 2002.
[13] 阚光远,洪 阳,梁 珂,等.基于GPU加速的水文模型参数率定[J].人民长江,2019,50(5):65-69,75.
[14] 李向阳, 程春田, 武新宇, 等. 水文模型模糊多目标SCE-UA参数优选方法研究[J]. 中国工程科学, 2007, 9(3): 52-57.
[15] 葛 路, 刘登嵩, 许月萍, 等. 水文模型在不同时间尺度的适用性研究[J]. 科技通报, 2022, 38(1): 13-19.
[16] 长江水利委员会.洞庭湖综合规划(修订稿) [R].武汉:长江水利委员会,2016.
基金
湖南省水利科技重大项目(XSKJ2021000-08)