通过理论推导和数值模拟验证,对基于变折射率光学透镜原理设计特殊变密度流体域来控导水面波的机理开展了研究。 研究结果表明,依据让光线转向的Eaton透镜设计的变密度流体域可以让平行入射的水面波转向传播,使得下游区域的波浪强度明显减弱,从而减轻涉水工程受到波浪影响;而依据让光线聚焦的Luneburg透镜设计的变密度流体域可以让平行入射的水面波聚焦于一点,使得该点波浪强度显著增强,进而利于波浪能的收集利用。进一步分析表明,根据具体工程需求和现场条件,设计和布置不同大小和功能的变密度流体区域,从而实现对水面波的调控是具可行性的。该理论和方法可为水利和海洋工程中制定波浪的防范和利用措施提供新的思路。
Abstract
The mechanism of controlling water wave by designing special variable-density fluid is studied through theoretical analysis and numerical simulation based on the principle of gradient refractive index optical lens.The impact of water waves on water-related projects can be alleviated by designing variable-density fluid lens to make parallel incident water waves turn back and propagate backwards according to the principle of the Eaton lens which could deflect ray trajectories,hence reducing wave intensity in downstream area.On the other hand,water wave energy can be better collected and exploited by designing variable-density fluid lens to make parallel incident water wave focus to a point and enhance wave intensity in light of the Luneburg lens which can focalize ray trajectories.Our study proves that it is feasible to regulate and control surface water waves by designing and arranging variable-density fluid regions of different sizes and functions according to specific application requirements and project conditions.The theory and technique in this paper provides a new idea for controlling and utilizing waves in water conservancy and ocean engineering.
关键词
波浪 /
变折射率透镜 /
变密度流体域 /
Luneburg透镜 /
Eaton透镜
Key words
water wave /
gradient index lens /
variable density fluid area /
Luneburg lens /
Eaton lens
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] HEWITT J E,CUMMINGS V J,ELLIS J I,et al.The Role of Waves in the Colonisation of Terrestrial Sediments Deposited in the Marine Environment[J].Journal of Experimental Marine Biology and Ecology,2003,290(1):19-47.
[2] 郭腾飞.波浪与海流对沉积物再悬浮贡献的原位观测研究[D].青岛:中国海洋大学,2014.
[3] ZHENG C W,LI C Y.Overview of Site Selection Difficulties for Marine New Energy Power Plant and Suggestions:Wave Energy Case Study[J].Journal of Harbin Engineering University,2018,39(2):200-206.
[4] KIM S H.Cylindrical Acoustic Luneburg Lens[C]∥IEEE 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics-Metamaterials 2014,Copenhagen,Denmark.August 25-30,2014:364-366.
[5] KIM S H.Sound Focusingby Acoustic Luneburg Lens[J].Physics,2014,12(1):1-4.
[6] KIM S H,SY P V,DAS M P.Acoustic Eaton Lens Array and Its Fluid Application[J].Modern Physics Letters B,2017,31(8):1-10.
[7] ZOU S Y,XU Y D,ZATIANIAN R,et al.Broadband Waveguide Cloak for Water Waves[J].Physical Review Letters,2019,123:074501.
[8] LUNEBURG R K.The Mathematical Theory of Optics[J].Brown University Press,1944,189(212):865-867.
[9] LUNEBURG R K.Mathematical Theory of Optics[J].American Journal of Physics,1966,34(3):319-320.
[10]EATON J E.On Spherically Symmetric Lenses[J].Transactions of the Ire Professional Group on Antennas & Propagation,1953,4(1):66-71.
[11]WANG C,XU T T,BI S B,et al.Measurement of the Focusing Constant of Gradient-Index Fiber Lens and Its Application in Developing GRIN Fiber Probes[J].Measurement,2016,90:542-548.
[12]张 昊.基于梯度折射率材料的声偏转器研究[D].南京:南京大学,2016.
[13]XIE Y B,FU Y Y,JIA Z T,et al.Acoustic Imaging with Metamaterial Luneburg Lenses[J].Scientific Reports,2018,8(1):16188.
[14]XU L,CHEN H Y.Conformal Transformation Optics[J].Nature Photonics,2015,9(1):15-23.
[15]SANCHIS L,GARCIA C V M,LLOPIS P R,et al.Three-dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere[J].Physical Review Letters,2013,110(12):1243011.
[16]STOKER J J.Surface Waves in Water of Variable Depth[J].Quarterly of Applied Mathematics,1948,5(1):1-54.
基金
raybet体育在线
开放研究基金项目(CKWV2018459/KY);国家自然科学基金优秀青年项目(51922065);武汉理工大学国家级大学生创新创业训练计划项目(S202010497130)