为掌握白垩系冻结砂岩动态压缩破坏机理,借助分离式霍普金森压杆对-30 ℃饱水砂岩开展不同应变率单轴冲击试验,结果表明:冻结砂岩动态损伤经历“线弹性变形、微裂纹演化、裂隙非稳定扩展、应变软化”4个阶段,损伤来源于初始宏细观缺陷与新生裂隙的交互演变,动态增长因子变化表明砂岩强度和变形的应变率强化效应显著;初始损伤由宏细观缺陷累加构成,不同尺度损伤缺陷耦合形成动态总损伤;单轴冲击压缩下岩石损伤演化呈正交异性,基于各向同性方程修正得到砂岩动态损伤本构关系,临界损伤是具备初始损伤、动弹性模量、动态抗压强度及峰值应变等指标特性的综合量;理论结果与试验曲线吻合良好,决定系数均>0.910,能较好反映冻结砂岩峰前段强度特征。
Abstract
Uniaxial impact tests with different strain rates were carried out on -30 ℃ water-saturated sandstone with the help of split Hopkinson pressure bar to investigate the dynamic compression failure mechanism of Cretaceous frozen sandstone.Results reveal that the frozen sandstone experienced four stages of dynamic damage: linear elastic deformation,microcrack evolution,unstable crack propagation,and strain softening.The damage comes from the interactive evolution of initial macro- and micro-defects and new cracks.The change of dynamic growth factor demonstrates significant strain rate strengthening effect of sandstone’s strength and deformation.The initial damage is composed of the accumulation of macro- and micro-defects,and the dynamic total damage is formed by the coupling of damage and defects of different scales.The damage evolution of rock under uniaxial impact compression is orthotropic.The dynamic damage constitutive relationship of sandstone is modified based on the isotropic equation.Critical damage is a comprehensive quantity involving initial damage,dynamic elastic modulus,dynamic compressive strength and peak strain.The theoretical results are in good agreement with the experimental curves,with a decisive coefficients over 0.910.The present constitutive relation well reflects the strength characteristics of frozen sandstone before reaching peak.
关键词
白垩系冻结砂岩 /
霍普金森压杆 /
初始损伤 /
正交异性 /
本构模型
Key words
cretaceous frozen sandstone /
Hopkinson pressure bar /
initial damage /
orthotropic /
constitutive model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 苏宏明,王 磊,陈世官,等.中低应变率加载下弱胶结软岩动力学特性[J].工程爆破,2020,26(5):21-29.
[2] 朱珍德,色麦尔江·麦麦提玉苏普,方若进,等.冻融循环作用下砂岩卸荷强度特性试验及损伤特性研究[J].raybet体育在线
院报,2018,35(3):1-5,12.
[3] 胡 华,胡泽佩,梁健业,等.动态荷载作用下细砂岩流变损伤力学特性试验研究[J].raybet体育在线
院报,2019,36(3):74-78,83.
[4] 魏 尧,杨更社,申艳军,等.白垩系饱和冻结砂岩蠕变试验及本构模型研究[J].岩土力学,2020,41(8):1-11.
[5] 赵光明,谢理想,孟祥瑞.软岩的动态力学本构模型[J].爆炸与冲击,2013,33(2):126-132.
[6] 袁 璞,马冬冬.干湿循环与动载耦合作用下煤矿砂岩损伤演化及本构模型研究[J].raybet体育在线
院报,2019,36(8):119-124.
[7] WANG Lei,SU Hong-ming,CHEN Shi-guan,et al.Nonlinear Dynamic Constitutive Model of Frozen Sandstone Based on Weibull Distribution[J].Advances in Civil Engineering,2020,38(4):1-10.
[8] 张力民,吕淑然,刘红岩.综合考虑宏细观缺陷的岩体动态损伤本构模型[J].爆炸与冲击,2015,35(3):428-436.
[9] 刘红岩,杨 艳,李俊峰,等.基于TCK模型的非贯通节理岩体动态损伤本构模型[J].爆炸与冲击,2016,36(3):319-325.
[10] 赵 航,李新平,罗 忆,等.裂隙岩体中弹性波传播特性试验及宏细观损伤本构模型研究[J].岩土力学,2017,38(10):2939-2948.
[11] 李克钢,秦庆词,杨宝威,等.考虑初始宏细观缺陷的裂隙岩体损伤本构模型研究[J].中国安全生产科学技术,2018,14(12):90-96.
[12] 陈蕴生,韩 信,李 宁,等.非贯通裂隙介质单轴受力条件下的损伤本构关系探讨[J].岩石力学与工程学报,2005,24(增刊2):5926-5931.
[13] 孙传猛,曹树刚,李 勇,等.含初始损伤的煤统计损伤本构模型研究[J].中国矿业大学学报,2016,45(2):244-253.
[14] 崔新壮,金 青,李卫民,等.含初始损伤的水泥砂浆材料的动态本构关系研究[J].工程爆破,2001,7(2):1-4,49.
[15] 王倩倩,徐 颖,汪海波,等.不同损伤程度砂岩相似材料动态力学性能试验研究[J].黄金科学技术,2020,28(6):868-876.
[16] 王登科,刘淑敏,魏建平,等.冲击破坏条件下煤的强度型统计损伤本构模型与分析[J].煤炭学报,2016,41(12):3024-3031.
[17] 朱晶晶.循环冲击载荷下岩石力学特性与损伤模型的试验研究[D].长沙:中南大学,2012.
[18] 吴 政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报,1996,15(1):55-61.
[19] 李树春,许 江,李克钢,等.基于Weibull分布的岩石损伤本构模型研究[J].湖南科技大学学报:自然科学版,2007,22(4):65-68.
[20] 秦 越,王 磊,苏宏明,等.白垩系冻结砂岩动态统计损伤本构关系研究[J].工程爆破,2021,27(3):42-50.
基金
国家自然科学基金项目(41702339,51404193)