天然明渠减速流超大尺度湍流结构特性初步研究

张鹏, 段炎冲, 王永强, 胡江, 杨胜发, 李文杰

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (9) : 77-83.

PDF(9976 KB)
PDF(9976 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (9) : 77-83. DOI: 10.11988/ckyyb.20210617
水力学

天然明渠减速流超大尺度湍流结构特性初步研究

  • 张鹏1, 段炎冲2, 王永强3, 胡江4, 杨胜发1, 李文杰1
作者信息 +

Preliminary Research on Characteristics of Very-large-scale Turbulence Motions in Decelerating Open Channel Flow

  • ZHANG Peng1, DUAN Yan-chong2, WANG Yong-qiang3, HU Jiang4, YANG Sheng-fa1, LI Wen-jie1
Author information +
文章历史 +

摘要

为探究天然明渠减速流中超大尺度湍流结构特性,使用声学多普勒剖面流速仪(ADCP)和声学多普勒流速仪(ADV)对重庆河段开展了单条垂线以及水面区域固定点的三维瞬时流速测量,对紊动强度、超大尺度湍流结构波长以及湍动能占比等进行了分析。初步结果显示:在天然明渠减速流中仍然存在超大尺度湍流结构,其纵向尺度在沿水深方向上表现为先增大后减小的变化趋势;减速流中超大尺度湍流结构能够在水面区域维持自身结构且携带着大部分的湍动能。

Abstract

This study experimentally examined the very-large-scale motions (VLSMs) characteristics in decelerating open-channel flow based on acoustic Doppler current profiler (ADCP) and acoustic Doppler velocimeter (ADV) measurements. Meanwhile, the turbulence intensity, VLSMs’ wavelength and turbulent kinetic energy ratio were analyzed. Statistical evidence of the presence of VLSMs in decelerating open channel flow was presented. Moreover, its streamwise scale increased first and then decreased along with the water depth. The VLSMs still exist in the water surface area of the decelerating open channel flow and occupy about 46% of the turbulent kinetic energy.

关键词

减速流 / 超大尺度湍流 / 拟序结构 / 功率谱 / 湍动能

Key words

decelerating flow / very-large-scale motions / coherent structure / power spectra / turbulent kinetic energy

引用本文

导出引用
张鹏, 段炎冲, 王永强, 胡江, 杨胜发, 李文杰. 天然明渠减速流超大尺度湍流结构特性初步研究[J]. raybet体育在线 院报. 2022, 39(9): 77-83 https://doi.org/10.11988/ckyyb.20210617
ZHANG Peng, DUAN Yan-chong, WANG Yong-qiang, HU Jiang, YANG Sheng-fa, LI Wen-jie. Preliminary Research on Characteristics of Very-large-scale Turbulence Motions in Decelerating Open Channel Flow[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(9): 77-83 https://doi.org/10.11988/ckyyb.20210617
中图分类号: TV131.2   

参考文献

[1] 高 虎, 王秋生. 河床中值粒径对桥墩冲刷坑演化过程的影响[J]. raybet体育在线 院报, 2022, 39(5): 15-21.
[2] 李沛霖, 杨胜发, 周倩倩,等. 三峡库区细沙输移运动状态的水槽试验研究[J]. raybet体育在线 院报, 2017, 34(5): 1-4.
[3] 张小峰, 金 栋, 卢新华,等. 明渠减速流下床面摩阻流速研究[J]. 华中科技大学学报(自然科学版), 2014, 42(10): 113-118.
[4] KIM K C, ADRIAN R J. Very Large-scale Motion in the Outer Layer[J]. Physics of Fluids, 1999, 11(2): 417-422.
[5] GUALA M, HOMMEMA S E, ADRIAN R J. Large-scale and Very-large-scale Motions in Turbulent Pipe Flow[J]. Journal of Fluid Mechanics, 2006, 554: 521-542.
[6] BALAKUMAR B J, ADRIAN R J. Large- and Very-large-scale Motions in Channel and Boundary-layer Flows[J]. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 2007, 365: 665-681.
[7] DENNIS D J C, NICKELS T B. Experimental Measurement of Large-scale Three-dimensional Structures in a Turbulent Boundary Layer. Part 2. Long Structures[J]. Journal of Fluid Mechanics, 2011, 673: 218-244.
[8] ZHONG Q, CHEN Q G, WANG H, et al. Statistical Analysis of Turbulent Super-streamwise Vortices Based on Observations of Streaky Structures near the Free Surface in the Smooth Open Channel Flow[J]. Water Resources Research, 2016, 52: 3563-3578.
[9] CAMERON S M, NIKORA V I, STEWART M T. Very-large-scale Motions in Rough-bed Open-channel Flow[J]. Journal of Fluid Mechanics, 2017, 814: 416-429.
[10] DUAN Y, CHEN Q, LI D, et al. Contributions of Very Large-scale Motions to Turbulence Statistics in Open Channel Flows[J]. Journal of Fluid Mechanics, 2020, 892(A3): 1-23.
[11] ZHANG P, DUAN Y C, LI D X, et al. Turbulence Statistics and Very-large-scale Motions in Decelerating Open-channel Flow[J]. Physics of Fluids, 2019, 31(125106): 1-8.
[12] CAMERON S M, NIKORA V I, WITZ M J. Entrainment of Sediment Particles by Very Large-scale Motions[J]. Journal of Fluid Mechanics, 2020, 888(A7): 1-18.
[13] MACMAHAN J, RENIERS A, ASHLEY W, et al. Frequency-wavenumber Velocity Spectra, Taylor’s Hypothesis, and Length Scales in a Natural Gravel Bed River[J]. Water Resources Research, 2012, 48(9): 1-12.
[14] 郑晓静, 王国华. 高雷诺数壁湍流的研究进展及挑战[J]. 力学进展, 2020, 50(1): 1-49.
[15] 陈 钢, 程和琴. 长江下游河道河床阻力分布特征及影响因素分析[J]. raybet体育在线 院报, 2019, 36(8): 10-16.
[16] 李舒豪, 李广雪, 徐继尚,等. 基于 ADCP反演渤海湾悬浮体浓度年变化[J]. 海洋地质前沿, 2020, 36(1): 30-41.
[17] 李文杰, 黄亚非, 杨胜发,等. 基于ADV的三峡水库瞬时含沙量测量研究[J]. 水力发电学报, 2015, 34(11): 70-76.
[18] 兰庭飞, 吴 昊, 唐杰平,等. 基于新型高频声学多普勒流速剖面仪的河口近底部边界层观测初探[J]. 海洋通报, 2019, 38(6): 640-648.
[19] PERRY A E, HENBEST S, CHONG M S. A Theoretical and Experimental Study of Wall Turbulence[J]. Journal of Fluid Mechanics, 1986, 165: 163-199.
[20] HUTCHINS N, MARUSIC I. Evidence of Very Long Meandering Features in the Logarithmic Region of Turbulent Boundary Layers[J]. Journal of Fluid Mechanics, 2007, 579: 1-28.
[21] ELSINGA C G, ADRIAN R J, VAN OUDHEUSDEN B W, et al. Three-dimensional Vortex Organization in a High-Reynolds-Number Supersonic Turbulent Boundary Layer[J]. Journal of Fluid Mechanics, 2010, 644: 35-60.
[22] GANAPATHISUBRAMANI B, HUTCHINS N, MONTY J P, et al. Amplitude and Frequency Modulation in Wall Turbulence[J]. Journal of Fluid Mechanics,2012,712:61-91.
[23] CHU X, WEIGAND B, VAIKUNTANATHAN V. Flow Turbulence Topology in Regular Porous Media: From Macroscopic to Microscopic Scale with Direct Numerical Simulation[J]. Physics of Fluids, 2018, 30(065102): 1-18.
[24] BAARS W J, TALLURU K M, HUTCHINS N, et al. Wavelet Analysis of Wall Turbulence to Study Large-scale Modulation of Small Scales[J]. Experiments in Fluids, 2015, 56(188): 1-15.
[25] HURTHER D, LEMMIN U, TERRAY E A. Turbulent Transport in the Outer Region of Rough-Wall Open-channel Flows: The Contribution of Large Coherent Shear Stress Structures (LC3S)[J]. Journal of Fluid Mechanics, 2007, 574: 465-493.
[26] 张 鹏, 杨胜发, 胡 江,等. 明渠湍流发夹涡包形成及湍动能分布特性[J]. 水动力学研究与进展, 2018, 33(2): 659-666.

基金

国家重点研发计划项目(2018YFB1600400);国家自然科学基金项目(51679020);重庆交通大学科研启动项目(20JDKJC-C008)

PDF(9976 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map