薄梁板壳的数值计算涉及关于挠度的4阶微分方程,其困难在于构造C1连续的近似函数;同时,由于薄曲梁和曲壳控制方程的复杂性,通常用直梁或平板单元近似地模拟曲梁或曲壳,容易产生几何误差进而带来力学分析上的误差。前期研究采用独立覆盖流形法实现了基于厚梁板壳假设的精确几何曲梁和曲壳分析,本文在此基础上讨论了这种新型流形法的分区级数解的C1连续性,完成了基于Euler-Bernoulli梁理论和Kirchhoff-Love板壳理论的精确几何薄曲梁和曲壳分析,并解决了几何公式推导复杂的问题。详细给出了薄曲梁的计算公式,简述了薄曲壳的计算过程,将前期文献中的算例在薄梁板壳假设下重新计算,验证了方法的有效性,相比厚梁板壳假设可节省约30%的自由度。研究成果同时展示了应用独立覆盖流形法求解4阶微分方程的潜力。
Abstract
The numerical calculation of thin beam, plate and shell involves the fourth-order differential equation about deflection whose difficulty lies in constructing approximation functions with C1 continuity. In the meantime, due to the complexity of the governing equation, the thin curved beam and curved shell are usually simulated approximately by using straight beam or flat plate elements, which is prone to generate geometric errors and then brings errors in mechanical analysis. In our previous study, manifold method based on independent covers is used to analyze curved beam and shell with exact geometry based on the assumption of thick beam and shell. On this basis, the C1 continuity of the piecewise-defined series solutions of the new manifold method is discussed. The thin curved beam and shell with exact geometry is analyzed based on Euler-Bernoulli beam theory and Kirchhoff-Love shell theory, and the complexity of derivation of geometric formula is overcome. The calculation formula of thin curved beam is given in detail, and the process of thin curved shell is briefly described. The examples in previous study are recalculated under the assumption of thin beam, plate and shell, which verifies the effectiveness of the proposed method. Compared with the assumption of thick beam, plate and shell, the method saves about 30% of the degree of freedom. Meanwhile, the research demonstrates the potential of solving the fourth-order differential equations by applying manifold method based on independent covers.
关键词
梁板壳分析 /
曲梁和曲壳 /
精确几何 /
级数解 /
C1连续
Key words
beam, plate and shell analysis /
curved beam and curved shell /
exact geometry /
series solutions /
C1 continuity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] S·铁摩辛柯,S·沃诺斯基.板壳理论[M].北京:科学出版社,1977.
[2] ZIENKIEWICZ O C,TAYLOR R L. 有限元方法:第2卷,固体力学[M]. 5版. 庄 茁,岑 松,译.北京: 清华大学出版社, 2006.
[3] BELYTSCHKO T,LIU W K,MORAN B等.连续体和结构的非线性有限元[M].庄 茁,柳占立,成 健,译. 北京:清华大学出版社,2002.
[4] 吴连元.板壳理论[M].上海:上海交通大学出版社,1989.
[5] 苏海东,颉志强.梁的独立覆盖分析方法[J].raybet体育在线
院报,2018,35(4):143-150.
[6] 苏海东,周 朝,颉志强.基于精确几何的曲梁分析新方法[J].raybet体育在线
院报,2018,35(4):151-157,166.
[7] 苏海东,周 朝,颉志强,等.采用独立覆盖流形法分析精确几何描述的曲壳[J].raybet体育在线
院报, 2018,35(4):158-166.
[8] SHI G H. Manifold Method of Material Analysis[C] //U. S. Army Research Office. Transactions of the Ninth Army Conference on Applied Mathematics and Computing, Minneapolis, Minnesota, U. S. A, June 18-21, 1991: 51-76.
[9] 石根华.数值流形方法与非连续变形分析[M].裴觉民,译. 北京:清华大学出版社,1997.
[10] SU H D, QI Y F, GONG Y Q, et al. Preliminary Research of Numerical Manifold Method Based on Partly Overlapping Rectangular Covers[C] //DDA Commission of International Society for Rock Mechanics. Proceedings of the 11th International Conference on Analysis of Discontinuous Deformation (ICADD11), Fukuoka, Japan, August 27-29, 2013. London: Taylor & Francis Group, 2013: 341-347.
[11] BABUSKA I, MELENK J M. The Partition of Unity Method[J]. International Journal for Numerical Methods in Engineering, 1997, 40: 727-758.
[12] 苏海东,颉志强,龚亚琦,等.基于独立覆盖的流形法收敛性及覆盖网格特性[J].raybet体育在线
院报,2016,33(2):131-136.
[13] 苏海东,付 志,颉志强.基于任意形状网格和精确几何边界的数值计算[J]. raybet体育在线
院报,2020,37(7): 167-174.
[14] 苏海东,付 志,颉志强.基于任意网格划分的二维自动计算[J]. raybet体育在线
院报,2020,37(7):160-166.
[15] 叶其孝,沈永欢.实用数学手册[M].2版. 北京:科学出版社,2006.
基金
中央级公益性科研院所基本科研业务费项目(CKSF2019394/GC)