三峡建库后,水库下游河道含沙水流长期处于严重次饱和状态,输沙由相对平衡状态转变为不平衡状态,输沙强度较自然条件下发生显著变化。根据三峡水库蓄水运用前后(1992—2017年)长江中游主要水文站断面、床沙与水文资料,从输沙率变化、床沙粒径变化、平滩流量等角度研究长江中游河道复式断面输沙强度问题,得出以下结论:三峡水库蓄水运用后,进入下游河道的泥沙大幅度较少,长江中游沿程水文站同流量级输沙率明显减少;床沙粒径沿程出现不同程度的粗化,其中荆江河段粗化最为明显,螺山至武汉河段略有粗化;螺山站和汉口站在自然条件下平滩流量附近输沙强度出现峰值,对应的水流挟沙能力为极大值。
Abstract
After the construction of the Three Gorges Reservoir (TGR),sediment-containing flow in the downstream channel of the reservoir had been in a severe sub-saturation state for a long time. The sediment transport changed from a relative equilibrium state to an unbalanced state,and the sediment transport intensity varied significantly compared with that in natural condition. Based on the cross sectional data,bed sediment and hydrological data of major hydrological stations in the midstream of the Yangtze River before and after the operation of the TGR (1992-2017),we looked into the sediment transport intensity of compound cross sections from the perspectives of sediment transport rate,bed sediment particle size,and bankfull discharge. We found that after the impoundment operation of TGR,the sediment that enters the downstream channels reduced remarkably,and the sediment transport rate of the same flow level at hydrologic stations along the midstream of Yangtze River decreased obviously. The bed sediment was coarsened in different degrees along the river. Such coarsening was most obvious in the Jingjiang reach and less obvious in the Luoshan-Wuhan reach. At hydrologic stations of Luoshan and Hankou,the sediment transport intensity in the adjacent of bankfull discharge reached the maximum under natural conditions,and the corresponding sediment carrying capacity reached peak.
关键词
水库下游 /
复式河槽 /
输沙率 /
平滩流量 /
输沙能力
Key words
downstream of reservoir /
compound channels /
sediment transport rate /
bankfull discharge /
sediment transport capacity
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] BAGNOLD R A.An Approachto the Sediment Transport Problem from General Physics[R].Washington,D.C.:U.S.Government Printing Office,1966:1-37.
[2] 维里坎诺夫 MA.泥沙运动重力理论的基础[J].泥沙研究,1956(1):4-14.
[3] 张瑞瑾.河流泥沙动力学[M].北京:水利电力出版社,1989:1-295.
[4] 余明辉,杨国录,刘高峰,等.非均匀沙水流挟沙力公式的初步研究[J].泥沙研究,2001(3):25-29.
[5] 沙玉清.泥沙运动的基本规律[J].泥沙研究,1956(2):1-54.
[6] 舒安平.水流挟沙能力公式的转化与统一[J].水学报,2009,40(1):19-26,32.
[7] 钱 宁,张 仁,李九发,等.黄河下游挟沙能力自动调整机理的初步探讨[J].地理学报,1981(2):143-156.
[8] 郑艳爽,刘树君,彭 红,等.黄河典型冲积性河道输沙能力影响因素分析[J].人民黄河,2012,34(10):34-36.
[9] 申红彬,张小峰,严 军,等.黄河下游河道断面宽深比对输沙能力的影响[J].武汉大学学报(工学版),2009,42(3):273-276,312.
[10] 刘 峰.较细颗粒泥沙对较粗颗粒泥沙水流挟沙力的影响试验研究[J].广东水利水电,1999(3):20-21,11.
[11] 杨克君,聂锐华,曹叔尤,等.清水作用下全动床复式河槽泥沙输移特性及其模拟[J].四川大学学报(工程科学版),2013,45(2):6-12.
[12] Н.И.马卡维耶夫,麦乔威.造床流量[J].泥沙研究,1957(2):40-43.
[13] 韩其为.第一造床流量及输沙能力的理论分析:“黄河调水调沙的根据、效益与巨大潜力”之三[J].人民黄河,2009,31(1):1-4,7,120.
[14] 孙昭华,周炜兴,周 坤,等.江湖水沙输移与长江中下游造床流量的关系[J].水利学报,2021,52(5):521-534.
[15] 许全喜.三峡工程蓄水运用前后长江中下游干流河道冲淤规律研究[J].水力发电学报,2013,32(2):146-154.
[16] 张 为,高 宇,许全喜,等.三峡水库运用后长江中下游造床流量变化及其影响因素[J].水科学进展,2018,29(3):331-338.
[17] 武汉水利电力学院水流挟沙力研究组.长江中下游水流挟沙力研究:兼论以悬移质为主的挟沙水流能量平衡的一般规律[J].泥沙研究,1959(2):54-73.
[18] GANJU N K,KNOWLES N,SCHOELLHAMER D H.Temporal Downscaling of Decadal Sediment Load Estimates to a Daily Interval for Use in Hindcast Simulations[J].Journal of Hydrology,2008,349(3):512-523.
[19] MULLER G,FORSTNER U.General Relationship between Suspended Sediment Concentration and Water Disch in the Alpenrhein and Some Other Rivers[J].Nature,1968,217(5125):244-245.
[20] SYVITSKI J P,MOREHEAD M D,BAHR D B,et al.Estimatingial Sediment Transport:The Rating Parameters[J].Water Resources Research,2000,36(9):2747-2760.
[21] 樊咏阳,胡春燕,陈莫非.三峡水库蓄水前后荆江河段冲淤与水沙过程响应[J].人民长江,2020,51(10):1-6.
[22] 李义天,薛居理,孙昭华,等.三峡水库下游河床冲刷与水位变化[J].水力发电学报,2021,40(4):1-13.
基金
国家自然科学联合基金项目(U2240224);长江中下游河道保护与治理研究创新团队(CKSF2021530/HL)