基于变量筛选优化极限学习机的混凝土坝变形预测模型

曹恩华, 包腾飞, 胡绍沛, 袁荣耀, 鄢涛

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (7) : 59-65.

PDF(6239 KB)
PDF(6239 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (7) : 59-65. DOI: 10.11988/ckyyb.20210276
工程安全与灾害防治

基于变量筛选优化极限学习机的混凝土坝变形预测模型

  • 曹恩华1,2,3, 包腾飞1,2,3,4, 胡绍沛3, 袁荣耀3, 鄢涛1,2,3
作者信息 +

A Deformation Prediction Model for Concrete Dam Based on Extreme Learning Machine Optimized by Variable Selection

  • CAO En-hua1,2,3, BAO Teng-fei1,2,3,4, HU Shao-pei3, YUAN Rong-yao3, YAN Tao1,2,3
Author information +
文章历史 +

摘要

传统的统计模型泛化能力较弱且容易引入高维变量,这将对基于神经网络预测模型的输出结果产生负面影响,同时增加了过拟合风险。因此,有必要建立一个具有适当维度的数据驱动模型,以实现对大坝变形的准确监控。选用极限学习机(ELM)作为基础预测模型,提出基于平均影响值MIV-ELM模型的变量筛选法,以消除初始变量集中的冗余信息,从而降低模型复杂度,提高预测精度。分析结果表明,与传统预测模型相比,HST-MIV-ELM不仅具有最高的预测精度和预测性能,同时也有较强的可拓展性,为大坝安全监控系统的构建提供了可靠的理论基础。

Abstract

Traditional statistical models are of weak generalization capability and are prone to introduce high-dimensional variables,which will negatively affect the output of neural network-based prediction models and increase the risk of overfitting.It is necessary to build a data-driven model with appropriate dimensionality to accomplish accurate monitoring of dam deformation.In this paper,extreme learning machine(ELM)is selected as the base prediction model,and a variable selection method based on mean impact value(MIV)-ELM model is proposed to eliminate redundant information in the initial variable set,thus reducing the model's complexity and improving the prediction accuracy.Analysis results demonstrate that compared with traditional prediction models,HST-MIV-ELM not only has the highest prediction accuracy and robustness,but also has strong scalability.The study provides a reliable theoretical basis for the construction of dam safety monitoring system.

关键词

混凝土坝变形预测 / 变量筛选 / 极限学习机 / 平均影响值 / 反向逐变量剔除法

Key words

deformation prediction for concrete dam / variable selection / extreme learning machine / mean impact value / reverse variable-by-variable elimination method

引用本文

导出引用
曹恩华, 包腾飞, 胡绍沛, 袁荣耀, 鄢涛. 基于变量筛选优化极限学习机的混凝土坝变形预测模型[J]. raybet体育在线 院报. 2022, 39(7): 59-65 https://doi.org/10.11988/ckyyb.20210276
CAO En-hua, BAO Teng-fei, HU Shao-pei, YUAN Rong-yao, YAN Tao. A Deformation Prediction Model for Concrete Dam Based on Extreme Learning Machine Optimized by Variable Selection[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(7): 59-65 https://doi.org/10.11988/ckyyb.20210276
中图分类号: TV698.1   

参考文献

[1] 吴中如.水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003.
[2] CHEN B,HU T,HUANG Z,et al.A Spatio-temporal Clustering and Diagnosis Method for Concrete Arch Dams Using Deformation Monitoring Data[J].Structural Health Monitoring,2019,18:1355-1371.
[3] 顾冲时,吴中如.大坝与坝基安全监控理论和方法及其应用[M].南京:河海大学出版社,2006.
[4] CAO E,BAO T,GU C,et al.A Novel Hybrid Decomposition-Ensemble Prediction Model for Dam Deformation[J].Applied Sciences,2020,10(16):5700,doi:10.3390/app10165700.
[5] YANG J,QU X,CHANG M.An Intelligent Singular Value Diagnostic Method for Concrete Dam Deformation Monitoring[J].Water Science and Engineering,2019,12(3):205-212.
[6] 赵二峰,李 波,朱延涛.基于PPA-POT的RCCD变形监测控制值拟定方法[J].人民黄河,2021,43(3):135-139.
[7] 曹恩华,包腾飞,刘永涛,等.基于EMD-RVM-Arima的大坝变形预测模型及其应用[J].水利水电技术,2018,49(12):59-64.
[8] 康传利,陈 洋,张临炜,等.小波和混沌神经网络在大坝变形预测中的应用[J].人民黄河,2020,42(3):101-104,116.
[9] 袁冬阳.基于多元时空信息挖掘的混凝土重力坝变形体征监控方法[D].南昌:南昌大学,2019:62-64.
[10] BELMOKRE A,MIHOUBI K,SANTILLÁN D.Analysis of Dam Behavior by Statistical Models:Application of the Random Forest Approach[J].KSCE Journal of Civil Engineering,2019,23:4800-4811.
[11] LI D,ZHOU Y,GAN X.Research on Multiple Points Deterministic Displacement Monitoring Model of Concrete Arch Dam[J].Journal of Hydraulic Engineering,2011,42:981-985.
[12] DAI B,GU C,ZHAO E,et al.Statistical Model Optimized Random Forest Regression Model for Concrete Dam Deformation Monitoring[J].Structural Control & Health Monitoring,2018,25(6):e2170.1-e2170.15.
[13] 胡雨菡,包腾飞,朱 征,等.基于IABC-FCM-RVM算法的拱坝变形预测模型[J].武汉大学学报(工学版),2020,53(12):1055-1064.
[14] MATA J.Interpretation of Concrete Dam Behaviour with Artificial Neural Network and Multiple Linear Regression Models[J].Engineering Structures,2011,33:903-910.
[15] SU H,LI X,YANG Z,et al.Wavelet Support Vector Machine-based Prediction Model of Dam Deformation[J].Mechanical Systems and Signal Processing,2018,110:412-427.
[16] 鄢 涛,陈 波,曹恩华,等.基于EEMD-ELM的大坝变形预测模型[J].raybet体育在线 院报,2020,37(11):70-73,80.
[17] 牛景太.基于奇异谱分析与PSO优化SVM的混凝土坝变形监控模型[J].水利水电科技进展,2020,40(6):60-65,77.
[18] 谢国权,戚 蓝,曾新华.基于小波和神经网络拱坝变形预测的组合模型研究[J].武汉大学学报(工学版),2006,39(2):16-19.
[19] HUANG G,ZHU Q,SIEW C.Extreme Learning Machine:Theory and Applications[J].Neurocomputing,2006,70:489-501.
[20] DOMBI G W,NANDI P,SAXE J M,et al.Prediction of Rib Fracture Injury Outcome by an Artificial Neural Network[J].Journal of Trauma,1995,39:915-921.

基金

国家重点研发计划项目(2018YFC1508603,2016YFC0401601);国家自然科学基金项目(51579086,51739003)

PDF(6239 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map