基于主成分-聚类分析的南水北调中线干渠水质时空分异规律

陈浩, 靖争, 倪智伟, 罗慧萍, 罗平安, 李青云

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (7) : 36-44.

PDF(8204 KB)
PDF(8204 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (7) : 36-44. DOI: 10.11988/ckyyb.20210272
水环境与水生态

基于主成分-聚类分析的南水北调中线干渠水质时空分异规律

  • 陈浩1,2, 靖争1,2, 倪智伟3, 罗慧萍1,2, 罗平安1,2, 李青云1,2
作者信息 +

Spatiotemporal Variation of Water Quality in the Main Canal of Middle Route of South-to-North Water Diversion Project Based on Principal Component and Cluster Analysis

  • CHEN Hao1,2, JING Zheng1,2, NI Zhi-wei3, LUO Hui-ping1,2, LUO Ping-an1,2, LI Qing-yun1,2
Author information +
文章历史 +

摘要

作为京、津、冀、豫4省市重要水源,南水北调中线工程水质安全对于工程的稳定运行和优化管理十分重要。为掌握总干渠的水质状况和时空分异规律,对南水北调中线干渠25个断面的9个水质指标变化情况进行分析,运用主成分分析和聚类分析相结合的方法,识别主干渠主要水质指标成分,甄别各断面水质变化相似性特征,并开展水质评价与分区,为中线水质保护和管理提供决策参考和优化建议。研究结果表明,主成分分析将9项水质指标降维到4项,前4个主成分能够解释80.23%的原始环境信息,重点关注中线工程耗氧程度和酸化趋势。聚类分析将中线总干渠划分为4类水质管理区段,通过比较各段水质指标差异,识别出各分类渠段关键性水质指标,针对渠段特性进行水质时空分异规律分析。研究成果可为中线水质保护和管理提供理论依据。

Abstract

The middle route of South-to-North Water Diversion Project (SNWDP) is an important water source for Beijing,Tianjin,Hebei Province and Henan Province.Water quality safety is of essential importance for the stable operation and optimal management of the project.The changes of nine water quality indicators in 25 cross-sections of the main canal of the middle route of SNWDP were analyzed to investigate the water quality condition and spatiotemporal variation characteristics of the main canal.The major water quality indicators were identified,and the similarity of water quality changes among cross sections was discriminated via principal component analysis and cluster analysis.Evaluation and zoning of water quality was also carried out to provide decision-making reference and optimization suggestions for water quality protection and management.The nine water quality indicators were reduced to four by the principal component analysis,and the first four principal components could reflect 80.23% of the original environmental information,of which the degree of oxygen consumption and acidification trend should be paid special attentions.Moreover,the main canal was divided into four segments by cluster analysis.By comparing the differences in water quality indicators among each segment,the key water quality indicators in each segment were identified.The research findings offer a theoretical basis for the protection and management of water quality in the middle route of South-to-North Water Diversion Project.

关键词

南水北调中线工程 / 主成分分析 / 聚类分析 / 水质分区 / 时空分异特征

Key words

middle route of South-to-North Water Diversion Project / principal component analysis / cluster analysis / categories of water quality indexes / spatiotemporal variation characteritics

引用本文

导出引用
陈浩, 靖争, 倪智伟, 罗慧萍, 罗平安, 李青云. 基于主成分-聚类分析的南水北调中线干渠水质时空分异规律[J]. raybet体育在线 院报. 2022, 39(7): 36-44 https://doi.org/10.11988/ckyyb.20210272
CHEN Hao, JING Zheng, NI Zhi-wei, LUO Hui-ping, LUO Ping-an, LI Qing-yun. Spatiotemporal Variation of Water Quality in the Main Canal of Middle Route of South-to-North Water Diversion Project Based on Principal Component and Cluster Analysis[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(7): 36-44 https://doi.org/10.11988/ckyyb.20210272
中图分类号: TV21    X522   

参考文献

[1] 梁建奎,辛小康,卢 路,等.南水北调中线总干渠水质变化趋势及污染源分析[J].人民长江,2017,48(15):6-9.
[2] 孙 甲,韩品磊,王 超,等.南水北调中线总干渠水质状况综合评价[J].南水北调与水利科技,2019,17(6):102-112.
[3] NONG X,SHAO D,ZHONG H,et al.Evaluation of Water Quality in the South-to-North Water Diversion Project of China Using the Water Quality Index (WQI) Method[J].Water Research,2020,178:115781.
[4] KEMSLEY E K.Discriminant Analysis of High-dimensional Data:A Comparison of Principal Components Analysis and Partial Least Squares Data Reduction Methods[J].Chemometrics and Intelligent Laboratory Systems,1996,33(1):47-61.
[5] LOSKA K,WIECHUŁA D.Application of Principal Component Analysis for the Estimation of Source of Heavy Metal Contamination in Surface Sediments from the Rybnik Reservoir[J].Chemosphere,2003,51(8):723-733.
[6] MAHAPATRA S S,SAHU M,PATEL R K,et al.Prediction of Water Quality Using Principal Component Analysis[J].Water Quality Exposure and Health,2012,4(2):93-104.
[7] 刘臣辉,吕信红,范海燕.主成分分析法用于环境质量评价的探讨[J].环境科学与管理,2011,36(3):183-186.
[8] 王晓鹏,曾永年,丁生喜,等.基于改进主成分分析方法的复杂环境系统质量评价模型[J].系统工程理论与实践,2005(11):114-120.
[9] 韩晓刚,黄廷林,陈秀珍.改进的模糊综合评价法及在给水厂原水水质评价中的应用[J].环境科学学报,2013,33(5):1513-1518.
[10] 慕金波,侯克复.灰色聚类法在水环境质量评价中的应用[J].环境科学,1991(2):86-90.
[11] 李玉民,李旭宏,毛海军,等.主成分聚类分析在省域物流规划中的应用[J].东南大学学报(自然科学版),2004(4):549-552.
[12] 张 旋,王启山,于 淼,等.基于聚类分析和水质标识指数的水质评价方法[J].环境工程学报,2010,4(2):476-480.
[13] 江 敏,刘金金,卢 柳,等.灰色聚类法综合评价滴水湖水系环境质量[J].生态环境学报,2012,21(2):346-352.
[14] 明 星,姚 建,程 欢,等.基于主成分分析与聚类分析的水污染排放分布研究[J].绿色科技,2016(10):36-38.
[15] 杨道军,钱 新,殷福才,等.因子分析与聚类法的复合模型在水环境评价和管理中的应用[J].环境科学与管理,2007(4):155-158.
[16] 吉祝美,方 里,张 俊,等.主成分分析法在SPSS软件中的操作及在河流水质评价中的应用[J].环境研究与监测,2012,25(4):68-73.
[17] 赵朋飞,刘 俊,胡少敏.基于SPSS软件的主成分分析法在水质评价中的应用[J].科技创业月刊,2016,29(10):119-121.
[18] 韩胜娟.SPSS聚类分析中数据无量纲化方法比较[J].科技广场,2008(3):229-231.
[19] PU W,QUAN W,MA Z,et al.Long-term Trend of Chemical Composition of Atmospheric Precipitation at a Regional Background Station in Northern China[J].Science of the Total Environment,2017,580:1340-1350.
[20] JING Z,CHEN H,CAO H,et al.Spatial and Temporal Characteristics,Influencing Factors and Prediction Models of Water Quality and Algae in Early Stage of Middle Route of South-North Water Diversion Project[J].Environmental Science and Pollution Research,2022,29:23520-23544.
[21] 范傲翔,王智鹏,王 超,等.南水北调中线总干渠水体耗氧特征及成因[J].环境科学学报,2020,40(3):871-879.
[22] WANG H J,WANG H Z.Mitigation of Lake Eutrophication:Loosen Nitrogen Control and Focus on Phosphorus Abatement[J].Progress in Natural Science,2009,19(10):1445-1451.
[23] 谭浩强,何文杰,韩宏大,等.丹江口水库水质监测分析[J].供水技术,2015,9(6):1-5.
[24] 方锐缨.测定地表水中高锰酸盐指数的方法综述及发展[J].中国资源综合利用,2018,36(5):76-78.
[25] 黄雨榴,李小倩,刘运德,等.长江干流枯水期河水硫酸盐同位素组成特征及其来源解析[J].地质学报,2015,89(增刊1):269-271.

基金

国家自然科学基金青年基金项目(51909009);中央级公益性科研院所基本科研业务费项目(CKSF2019498/SH,CKSF2019198/SH)

PDF(8204 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map