路堤填筑碾压施工平面上不同部位填料所受约束条件存在较大差异,特别对于颗粒强度较低、骨架结构锁固效应较弱的软岩填料,碾压后靠近路堤中部的填料压实度大于两侧。基于采用含砂质泥岩作为填筑料的某路堤工程开展试验研究,结果表明:①靠近路堤中线和两侧临空面填料现场检测压实度分别不低于0.95和0.93,满足下路堤压实度要求,但压实度存在差异;②对碾压后的路堤填料取样,并分别在0.95和0.93的压实度下进行大型三轴固结排水试验,压实度0.95试样摩擦角较压实度0.93的约高13%,但黏聚力基本相同;③大应变过程压实度0.93填料体变与围压基本无关,细观结构压缩呈主导,而在压实度0.95下体缩与围压呈正相关,颗粒骨架受力更为充分,但仍呈全过程体缩,表明大变形过程伴随有颗粒破碎后的二次挤密;④进一步分析发现两种压实度下球应力-体变以及体积模量-围压均很好满足线性拟合关系,采用邓肯-张E-B模型可较好描述压实度差异状态下软岩填料的变形力学特性。
Abstract
The constraint conditions of filler on construction plane of embankment filling vary remarkably for each part. In particular, the compaction of soft-rock filler with low particle strength and weak structural lock effect is higher close to the center than that close to both sides. We carried out experimental study on an embankment project with sandy mudstone filler, and the results manifested that: 1) the measured compaction degrees of filler close to the center and both sides are not lower than 0.95 and 0.93, respectively, which meets the compaction requirements of embankment for second class highway, yet still with some difference; 2) large-scale triaxial consolidated-drained test was conducted on the rolled filler collected on site at the compaction degree of 0.95 and 0.93, respectively, and the results revealed stable cohesion and larger friction angle of sample at 0.95 compaction degree than that at 0.93 compaction degree by 13%; 3) in large strain process, the volumetric strain was generally irrelevant with confine pressure at the compaction degree of 0.93, dominated by mesostructure compression, while at the compaction degree of 0.95, volumetric shrinkage was positively correlated with confining pressure despite more sufficient stress in particle skeleton, implying that the large strain process was accompanied by secondary compaction after particles breakage; 4) at both compaction degrees, the relations of spheric stress versus volumetric strain and volumetric modulus versus confining pressure both obey linear fitting relation. Duncan-Chang E-B model could well describe the deformation mechanical characteristics of soft rock filler under different compaction degrees.
关键词
岩土工程 /
路堤填筑 /
软岩填料 /
压实度差异 /
变形力学特性
Key words
geotechnical engineering /
embankment filling /
soft-rock filler /
compaction difference /
deformation and mechanical properties
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 郭建湖. 软岩填筑高速铁路路基的适用性探讨[J]. 铁道工程学报, 2014(6): 13-17.
[2] 曹周阳, 杜秦文, 王晓谋. 变质软岩路堤填料特性的大型三轴试验研究[J]. 铁道建筑, 2015(9):90-93.
[3] 徐望国, 张家生, 贺建清. 加筋软岩粗粒土路堤填料大型三轴试验研究[J]. 岩石力学与工程学报, 2010, 29(3): 535-541.
[4] 蒋建清, 杨果林. 格宾网加筋红层软岩土石混填路堤力学行为的现场测试及数值模拟[J]. 岩土力学, 2016, 37(1): 156-165.
[5] 毛雪松, 周雷刚, 马 骉, 等. 强风化千枚岩填筑路基改良技术研究[J]. 中国公路学报, 2012, 25(2): 20-26.
[6] 杜秦文, 刘永军, 曹周阳. 变质软岩路堤填料湿化变形规律研究[J]. 岩土力学, 2015, 36(1): 41-46.
[7] 曾 铃, 邱 祥, 付宏渊, 等. 水位升降过程中崩解预处理炭质泥岩路堤稳定性分析[J].中国公路学报, 2017, 30(5): 10-19.
[8] 曾 铃, 罗锦涛, 侯 鹏, 等. 干湿循环作用下预崩解炭质泥岩裂隙发育规律及强度特性[J]. 中国公路学报, 2020, 33(9): 1-11.
[9] 张静波, 吕岩松, 詹永祥, 等. 贵州省重载高速公路软岩路堤填料分级标准研究[J]. 公路工程, 2017, 42(2): 210-227.
[10] 王明皎. 泥质软岩弃渣路用性能的研究[D]. 西安: 长安大学, 2013.
[11] 罗 强, 方 东, 詹学启. 蒙华铁路路基全风化软质岩填料碾压工艺试验[J]. 铁道工程学报, 2018, 240(9): 9-20.
[12] 张莎莎, 杨晓华, 杜耀辉, 等. 泥质软岩土石弃渣路基填筑工艺及质量检测方法[J]. 长安大学学报(自然科学版), 2016, 36(1): 8-13.
[13] 鞠兴华. 高速公路泥质软岩路堤沉降特性研究[D]. 西安: 长安大学, 2019.
[14] RINCON O, SHAKOOR A, OCAMPO M. Investigating the Reliability of H/V Spectral Ratio and Image Entropy for Quantifying the Degree of Disintegration of Weak Rocks[J]. Engineering Geology, 2016, 207: 115-128.
[15] JTG D30—2015,公路路基设计规范[S]. 北京: 人民交通出版社股份有限公司, 2015.
[16] GB/T 50123—2019, 土工试验方法标准[S]. 北京: 中国计划出版社, 2019.
[17] DUNCAN J, CHANG C Y. Non-linear Analysis of Stresses and Strain in Soils[J]. Journal of the Soil Mechanics and Foundation Division, ASCE, 1970, SM5: 1629-1653.
基金
国家自然科学基金面上项目(51979009);中央级公益性科研院所基本科研业务费项目(CKSF2019191/YT)