为解决水工建筑物面临的冲蚀问题,试验研究了在不同养护龄期下,不同体积掺量PVA纤维对混凝土强度、抗冲磨性能的影响,并对纤维混凝土的微观形貌进行了分析。研究结果表明,同基准组混凝土相比,当PVA纤维体积掺量为0.2%时,纤维混凝土的抗压强度提升了20.8%,劈裂抗拉强度提升了33.2%,抗冲磨强度提升了108.4%,磨损深度下降了34.2%,质量磨损率下降了3.9%。PVA纤维混凝土微观形貌的分析结果显示,当PVA纤维体积掺量为0.2%时,纤维在混凝土基体内分散性良好且呈乱向分布。结合SEM分析结果得知,在混凝土中掺入适量PVA纤维,可以显著提升水工混凝土的强度和抗冲磨性。
Abstract
In order to improve the abrasion resistance of hydraulic structures, we investigated into the influence of volumetric content of PVA fiber on the strength and abrasion resistance of hydraulic concrete at different curing ages, and also analyzed the micro-morphology of PVA fiber-added concretes. Compared with baseline group, the concrete samples added with 0.2% PVA fiber in volumetric content boasts larger compressive strength, splitting tensile strength, and abrasion resistance strength, up by 20.8%, 33.2%, and 108.4%, respectively, yet meanwhile smaller wearing depth and mass wear rate, down by 34.2% and 3.9%, respectively. Micro-morphology analysis reveal that the PVA fiber is well dispersed in the concrete matrix and distributed in random directions when its volumetric content is 0.2%. In association with SEM analysis, we can conclude that PVA fiber of suitable dosage would enhance the strength and abrasion resistance of hydraulic concrete remarkably.
关键词
水工混凝土 /
PVA纤维 /
体积掺量 /
抗冲磨性 /
劈裂抗拉强度 /
微观形貌
Key words
hydraulic concrete /
PVA fiber /
volumetric content /
abrasion resistance /
splitting tensile strength /
micro-morphology
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴 鹏. 钢纤维和PVA纤维对超高性能混凝土力学及抗冲磨性能影响研究[D]. 武汉:湖北工业大学,2019.
[2] HOLLAND T C, GUTSCHOW R A. Erosion Resistance with Sillica Fume Concrete[J]. Concrete International, 1987(3): 32-40.
[3] SONEBI M, BASSUONI M T. Investigating the Effect of Mixture Design Parameters on Pervious Concrete by Statistical Modelling[J]. Construction & Building Materials, 2013, 38(2): 147-154.
[4] 邵晓妹,范冬冬,马保国,等.CW弹性环氧砂浆抗冲磨性能及工程应用[J]. raybet体育在线
院报,2020,37(6):166-170.
[5] 田 竞,苏 骏,吴 鹏,等.纳米CaCO3对混凝土抗冲磨性能影响试验研究[J]. 混凝土与水泥制品,2020(6):9-12.
[6] 仲从春,李双喜,孟远远,等.超高性能混凝土抗冲磨性能试验研究[J]. 人民黄河,2021,43(1):16-20.
[7] FEBRILLET N, KIDO A, ITO Y, et al. Strength and Abrasion Resistance of Ultra High Strength Steel Fiber Reinforced Concrete[J]. Melanoma Research, 2000, 11(2): 63-71.
[8] 胡宏峡.黄河上游水电站抗冲磨混凝土试验研究[J]. 人民黄河,2020,42(10):142-147.
[9] 苏 骏,李 磊,吴 鹏,等.钢纤维与PVA纤维对超高性能混凝土强度及抗冲磨性能影响研究[J]. 混凝土与水泥制品,2019(11):39-42.
[10] 何 真,陈晓润,赵日煦,等.基于体积损失速率的混凝土抗冲磨性能评价[J]. 水力发电学报,2020,39(1):72-79.
[11] 涂天驰. 超高性能混凝土的抗冲磨性能研究[D]. 广州:华南理工大学,2018.
[12] 殷康蜓,孙海燕,龚爱民,等.PVA纤维对水泥基复合材料流动性能及力学性能的影响[J]. 粉煤灰综合利用,2018(4):19-22.
[13] 赵 杨,孙海燕,龚爱民,等.PVA纤维对水泥胶砂抗侵蚀性能的影响[J]. 混凝土与水泥制品,2021(3):62-65.
[14] 杜修力,田予东,窦国钦.纤维超高强混凝土的制备及力学性能试验研究[J]. 混凝土与水泥制品,2011(2):44-48,71.
[15] 邓中正,杨华全,肖开涛.掺纤维抗冲磨混凝土性能试验研究[J]. 混凝土,2017(4):8-10,14.
[16] 林小松,杨果林.钢纤维高强与超高强混凝土[M]. 北京:科学出版社,2002.
基金
云南省教育厅科学研究基金项目(2020J0242,2020Y188);云南农业大学科技创新创业行动基金项目(2021ZKX186)