卵石土是岩土工程建设中的常用材料,由于针对其流变力学特性的研究较少,导致无法评价该种材料的长期稳定性。采用试验研究、理论分析和数值模拟相结合的研究方法,针对卵石土开展了室内三轴蠕变试验,对卵石土蠕变的有关力学问题进行了探讨,分析了卵石土蠕变与时间、应力状态的关系,并提出了11参数卵石土蠕变的数学表达式及相应的参数指标。将该本构模型嵌入到ABAQUS软件中,计算了某大桥锚碇下覆地基的长期沉降变形。结果表明,提出的本构模型可以很好地描述卵石土的流变特性。与锚碇沉降变形监测结果相比,蠕变加速变形阶段的沉降计算结果偏大,蠕变稳定阶段的沉降计算结果偏小。研究结果可为卵石土的长期变形计算提供相关参考。
Abstract
Cobbly soil is widely applied in geotechnical engineering construction by virtue of its good engineering characteristics. The inadequate research on cobbly soil, especially on its creep characteristics, results in improper ways in evaluating its long-term stability. In the present research, the creep properties of cobbly soil are studied via laboratory triaxial compression test, theoretical analysis and numerical simulation. The relations of creep versus time and stress are analyzed, and a creep model containing eleven parameters is put forward. The creep model is embedded in ABAQUS software to calculate the long-term deformation of the foundation of a bridge as a case study. Results manifest that the constitutive model presented in the paper well describes the rheological properties of cobbly soil. Compared with monitoring results of anchorage deformation, the result of settlement calculation in creep acceleration stage is larger, while in stable creep stage is smaller.
关键词
卵石土 /
蠕变本构模型 /
室内试验 /
数值模拟 /
长期变形
Key words
cobbly soil /
creep constitutive model /
laboratory test /
numerical simulation /
long-term deformation
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZENG B, WANG L F, TIAN Y, et al. Study on Compaction Characteristics and Construction Control of Mixtures of Red Clay and Gravel[J]. Advances in Civil Engineering, 2018, doi: 10.1155/2018/8079379.
[2] 尹 进. 砂卵石土的流变特性及工程应用研究[D]. 长沙:中南大学, 2014.
[3] 严耿升, 王志硕, 胡向阳,等. 卵石土力学强度特性试验研究[J]. 工程勘察, 2016(2):17-22.
[4] 陈晓斌.红砂岩粗粒土剪胀效应大型三轴试验研究[J]. 岩石力学与工程学报,2010,29(增刊1):3145-3149.
[5] 周墨臻, 张丙印, 钱晓翔,等. 堆石料流变应变的硬化特性试验研究[J]. 岩土工程学报, 2020, 45,42(4):94-101.
[6] 李海芳, 张茵琪, 金 伟,等. 两河口水电站混合料流变模型研究[J]. 地震工程学报, 2011, 33(增刊):285-289.
[7] 朱 晟, 王永明, 徐 骞. 粗粒筑坝材料的增量流变模型研究[J]. 岩土力学, 2011,32(11):3201-3206.
[8] 徐远杰, 潘家军, 楚锡华,等. 基于扰动状态概念的堆石料本构模型研究[J]. 工程力学, 2010, 6(6):154-161.
[9] 王观琪, 余 挺, 李永红, 等. 300 m级高土石心墙坝流变特性研究[J]. 岩土工程学报, 2014, 36(1):140-145.
[10] GB/T 50123—2019,土工试验方法标准[S]. 北京:中国计划出版社,2019.
[11] 程展林, 丁红顺. 堆石料蠕变特性试验研究[J]. 岩土工程学报, 2004, 26(4):473-476.
[12] 李广信. 高等土力学[M]. 北京:清华大学出版社,2004.
[13] 殷宗泽. 土工原理[M]. 北京:中国水利水电出版社,2007.
[14] JTG 3362—2018,公路钢筋混凝土及预应力混凝土桥涵设计规范[S]. 北京:中国计划出版社,2018.
基金
国家自然科学基金项目(51979010);中央级公益性科研院所基本科研业务费专项(CKSF2021484/YT);国家自然科学基金区域联合基金重点项目(U21A20158)