为研究原生微生物加固砂土的影响因素,进行了室内胶结试验。采用不同灌注方式和不同配比的溶液,对试样中原生脲酶微生物进行激活,待微生物分解尿素能力达到阈值后,鉴定试样中微生物种属并对其进行系统发育分析,然后开展微生物诱导碳酸钙沉淀(MICP)胶结试验。通过微生物浓度、尿素浓度来监测试样的生物化学变化,根据无侧限抗压强度(UCS)和扫描电子显微镜成像(SEM)来评估试样加固效果。试验结果表明:加固效果与胶结液的灌注方式、有机质浓度、尿素浓度关系密切,双向交替灌注有利于改善试样胶结的均匀程度,较高浓度的有机质(酵母提取物)对土体中微生物多样性产生不利影响,激活和胶结效果较差;使用0.35 mol/L尿素的试样残余尿素浓度较高,而使用0.20 mol/L尿素的试样中,尿素残余较少;此次研究中,采用双向交替灌注、1.0 g/L酵母提取物、0.20 mol/L尿素处理的试样,生成的碳酸钙晶体连接紧密,胶结程度较好,其UCS值达1.55 MPa。研究成果表明,使用一定配比的溶液,可激活土体中的原生微生物,达到加固土体的目的。
Abstract
Laboratory consolidation test was carried out to study the influence factors of sand reinforcement by native microorganism. The native urease organisms in the soil were activated by using different injection methods with different concentrations of organic matters. After the urea hydrolysis ability reached the threshold value by the urease bacteria proliferated in the soil samples, the microbial species in the samples were identified and phylogenetic analysis was carried out, and then MICP cementaion treatment was performed. Biochemical changes in soil samples were monitored by cells density of urease bacteria and urea concentration. The reinforcement effects of soil samples were evaluated via unconfined compressive strength (UCS) and scanning electron microscope imaging (SEM). Results demonstrate that the reinforcement effect is strongly related to the way of injection and the concentrations of organic matter and urea. Bidirectional alternative grouting is beneficial to enhancing the uniformity of cementation. Biochemical analysis indicates that high concentration of organic matter (yeast extract) has adverse impact on the microbial diversity in soil, the activation of native urease bacteria in soil and the cementation effect. The residual concentration of urea in the sample with 0.35 mol/L urea was higher than that in the samples with 0.20 mol/L urea. In the present study, the soil column treated by 1.0 g/L yeast extract, 0.20 mol/L urea/calcium chloride solution and bidirectional injection achieved sound uniformity of cementation, with its carbonate crystals tightly connected and the UCS value reaching 1.55 MPa. The results conclude that the native microorganism in the soil can be activated effectively by a proper proportion of solution, hence strengthening the soil.
关键词
土体加固 /
微生物诱导碳酸钙沉淀(MICP) /
天然脲酶微生物 /
灌注方式 /
有机质浓度
Key words
soil reinforcement /
microbial induced calcite precipitation (MICP) /
native urease organisms /
injection method /
concentration of organic matter
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] FUJITA Y, FERRIS F G, LAWSON R D, et al. Calcium Carbonate Precipitation by Ureolytic Subsurface Bacteria[J]. Geomicrobiology Journal, 2000, 17: 305-318.
[2] 孙延忠,陈 青.石质文物加固中微生物诱导碳酸钙生成的研究[J].文物保护与考古科学,2009,21(3):29-32.
[3] 彭述权,张珂嘉,康景宇,等.裂隙岩体微生物阻渗机理试验研究[J].raybet体育在线
院报,2020,37(9):57-63,69.
[4] 李 贤,汪时机,何丙辉,等.试样适用MICP技术的渗透特性条件研究[J].岩土力学,2019,40(8):2956-2964.
[5] 刘 璐,沈 扬,刘汉龙,等.微生物胶结在防治堤坝破坏中的应用研究[J].岩土力学,2016,37(12):3410-3416.
[6] WHIFFIN V. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Australia: Murdoch University, 2004.
[7] 钱春香,王安辉,王 欣.微生物灌注加固试样研究进展[J].岩土力学,2015,36(6):1537-1548.
[8] 余 梦,张家铭,周 杨,等.MICP技术改性膨胀土试验研究[J].raybet体育在线
院报,2021,38(5):1-8.
[9] 彭 劼,温智力,刘志明,等.微生物诱导碳酸钙沉积加固有机质黏土的试验研究[J].岩土工程学报,2019,41(4):733-740.
[10] 黄 明,张瑾璇,靳贵晓,等.残积土MICP灌注结石体冻融损伤的核磁共振特性试验研究[J].岩石力学与工程学报,2018,37(12):2846-2855.
[11] 荣 辉,钱春香,李龙志.微生物水泥胶结机理[J].硅酸盐学报,2013,41(3):314-319.
[12] AKIYAMA M, KAWASAKI S. Microbially Mediated Sand Solidification Using Calcium Phosphate Compounds[J]. Engineering Geology, 2012, 137/138(7): 29-39.
[13] 刘 鹏, 邵光辉, 赵志峰, 等. 微生物水泥矿化过程受环境中生物的影响[J].硅酸盐学报, 2017,45(11):1642-1648.
[14] ACHAL V, PAN X, ZHANG D. Remediation of Copper-Contaminated Soil by Kocuria Flava CR1, Based on Microbially Induced Calcite Precipitation[J]. Ecological Engineering, 2011, 37(10): 1601-1605.
[15] ACHAL V, PAN X L, ZHANG D Y. Bioremediation of Pb-contaminated Soil Based on Microbially Induced Calcite Precipitation[J]. Journal of Microbiology & Biotechnology, 2012, 22(2): 244-247.
[16] KAKIMOTO S, OKAZAKI K, SAKANE T,et al. Isolation and Taxonomic Characterization of Acid Urease-producing Bacteria[J].Agricultural and Biology Chemistry, 1989, 53(4): 1111-1118.
[17] ACEA M J, MOORE C R, ALEXANDER M. Survival and Growth of Bacteria Introduced into Soil[J]. Soil Biology and Biochemistry, 1988, 20(4): 509-515.
[18] LITCHMAN E. Invisible Invaders: Non-pathogenic Invasive Microbes in Aquatic and Terrestrial Ecosystems[J]. Ecology Letters, 2010, 13(12): 1560-1572.
[19] BURBANK M, WEAVER T, GREEN T, et al. Precipitation of Calcite by Indigenous Microorganisms to Strengthen Liquefiable Soils[J]. Geomicrobiology Journal, 2011, 28(4): 301-312.
[20] GOMEZ M, ANDERSON C, DEJONG J T, et al. Stimulating In situ Soil Bacteria for Bio-cementation of Sands[C]//Proceedings of Geo-Congress 2014. Atlanta, Georgia. February 23-26, 2014: 1674-1682.
[21] GOMEZ M G, GRADDY C M R, DEJONG J T, et al. Stimulation of Native Microorganisms for Biocementation in Samples Recovered from Field-scale Treatment Depths[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(1): 04017098.
[22] GRADDY C M R, GOMEZ M G, KLINE L M, et al. Diversity of Sporosarcina-like Bacterial Strains Obtained from Meter-Scale Augmented and Stimulated Biocementation Experiments[J]. Environmental Science & Technology, 2018, doi: 10.1021/acs.est.7b04271.
[23] RAMACHANDRAN S K, RAMAKRISHNAN V, BANG S S. Remediation of Concrete Using Microorganisms[J]. ACI Materials Journal, 2001, 98: 3-9.
[24] LI Y H, CHEN Y Y M, BURNE R A. Regulation of Urease Gene Expression by Streptococcus Salivarius Growth in Biofilms[J]. Environmental Microbiology, 2000, 2: 169-177.
[25] 张知晓, 泽桑梓, 户连荣,等. 土壤脲酶活性调控因素和脲酶微生物系统发育研究[J]. 西部林业科学, 2018, 47(1):65-73.
基金
地质探测与评估教育部重点实验室主任基金(中央高校基本科研业务费)项目(GLAB2019ZR05);岩土力学与工程国家重点实验室2019年度开放基金课题基金项目(Z019014)