仿岩溶碳酸氢钙改良膨胀土试验研究

邱维钊, 杨秀娟, 陶然, 樊恒辉, 赵文赫, 刘昊, 刘翼飞

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (5) : 106-111.

PDF(1718 KB)
PDF(1718 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (5) : 106-111. DOI: 10.11988/ckyyb.20210089
岩土工程

仿岩溶碳酸氢钙改良膨胀土试验研究

  • 邱维钊, 杨秀娟, 陶然, 樊恒辉, 赵文赫, 刘昊, 刘翼飞
作者信息 +

Experimental Study on Expansive Soil Improvement by Calcium Bicarbonate from Pseudo-Karstification

  • QIU Wei-zhao, YANG Xiu-juan, TAO Ran, FAN Heng-hui, ZHAO Wen-he, LIU Hao, LIU Yi-fei
Author information +
文章历史 +

摘要

膨胀土具有吸水膨胀、失水收缩等不良工程性质,常采用石灰、水泥等土壤固化材料对其进行改良,但这些传统的土壤固化材料存在着污染环境、拌合不均匀等问题。以陕西省汉中市强膨胀土为研究对象,对仿岩溶碳酸氢钙改良膨胀土进行了自由膨胀率、无荷膨胀率、收缩、直接剪切、酸碱度和碳酸钙含量测定、粒度分析和扫描电镜试验等物理、力学、化学和微观结构试验。试验结果表明,仿岩溶碳酸氢钙可较好地降低膨胀土的胀缩性,并提高土体的抗剪强度,且仿岩溶碳酸氢钙与膨胀土的最优配比为6∶1;改良土中吸附的交换性Ca2+含量降低,碳酸钙含量增多,细粒含量降低,粗粒含量增多,内部孔隙减少;仿岩溶碳酸氢钙改良膨胀土的机理在于溶液中含有H+、Ca2+、HCO3-、CO32-等离子,同时溶解有饱和的二氧化碳气体,通过离子交换作用,溶液中的H+置换了土颗粒吸附的Ca2+,减小了双电层厚度;通过岩溶作用,新形成的碳酸钙具有沉积胶结和填充作用,颗粒间联结强度和团粒化作用得到增强,从而降低了土体胀缩性。由此可见,仿岩溶碳酸氢钙对膨胀土具有良好的改良作用。

Abstract

Lime and cement are widely used in engineering projects to modify the special engineering properties of expansive soil such as water swelling and dehydration shrinkage; but such traditional soil solidification materials are difficult to be well mixed, and also pollute the environment. The physical, mechanical, chemical and micro-structural properties of the typical strong expansive soil of Hanzhong stabilized by calcium bicarbonate from pseudo-karstification are studied by means of free swelling rate test, unloaded expansion rate test, shrinkage test, direct shear test, pH test, carbonic acid content determination test, particle size analysis test and scanning electron microscope test. Test results show that calcium bicarbonate from pseudo-karstification could reduce the swell-shrinking property of expensive soil and improve the soil's shear strength. The optimal mass ratio of calcium bicarbonate solution from pseudo-karstification to expansive soil is 6∶1. The content of exchangeable calcium ions, fine particles and interior pore decreased, while the content of calcium carbonate and coarse particles increased. The mechanism of solidifying expansive soil by calcium bicarbonate from pseudo-karstification can be explained as follows: given a large number of H+, Ca2 +, HCO3-, CO32 and excess carbon dioxide dissolved in solution, the Ca2+ adsorbed by soil particle are replaced by H+ through ion exchange reaction, hence reducing the thickness of electronic double layer. The newly formed calcium carbonate from karstification has effects of filling and reinforcing so that the connection between soil particles is enhanced and the swell-shrinking potential is reduced. In conclusion, calcium bicarbonate from pseudo-karstification has a good effect on reducing the swell-shrinking potential of expansive soil.

关键词

土体改良 / 膨胀土 / 岩溶作用 / 仿岩溶碳酸氢钙 / 改良机理

Key words

soil modification / expansive soil / karstification / calcium bicarbonate from pseudo-karstification / action mechanism

引用本文

导出引用
邱维钊, 杨秀娟, 陶然, 樊恒辉, 赵文赫, 刘昊, 刘翼飞. 仿岩溶碳酸氢钙改良膨胀土试验研究[J]. raybet体育在线 院报. 2022, 39(5): 106-111 https://doi.org/10.11988/ckyyb.20210089
QIU Wei-zhao, YANG Xiu-juan, TAO Ran, FAN Heng-hui, ZHAO Wen-he, LIU Hao, LIU Yi-fei. Experimental Study on Expansive Soil Improvement by Calcium Bicarbonate from Pseudo-Karstification[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(5): 106-111 https://doi.org/10.11988/ckyyb.20210089
中图分类号: TU452   

参考文献

[1] 王保田,张福海.膨胀土的改良技术与工程应用[M].北京:科学出版社,2008.
[2] 邓友生,吴 鹏,赵明华,等.基于最优含水率的聚丙烯纤维增强膨胀土强度研究[J].岩土力学,2017,38(2):349-353,360.
[3] 李 振,邢义川,李 鹏.压力对膨胀土遇水膨胀的抑制作用[J].水力发电学报,2006,27(2):21-26.
[4] 陈善雄,孔令伟,郭爱国.膨胀土工程特性及其石灰改性试验研究[J].岩土力学,2002,23(增刊1):9-12.
[5] 杨 俊,刘世宜,张国栋.冻融循环对风化砂改良膨胀土收缩变形影响研究[J].水力发电学报,2016,35(2):75-81.
[6] 陈永青,文畅平,方炫强.生物酶改良膨胀土的修正殷宗泽模型[J].岩土力学,2019,40(9):3515-3523.
[7] 庄心善,王俊翔,王 康,等.风化砂改良膨胀土的动力特性研究[J].岩土力学,2018,39(增刊2):149-156.
[8] 文畅平,王解军.基于南水模型的生物酶改良膨胀土应力-应变关系研究[J].岩石力学与工程学报,2018,37(4):1011-1019.
[9] 刘清秉,项 伟,张伟锋,等.离子土壤固化剂改性膨胀土的试验研究[J].岩土力学,2009,30(8):2286-2290.
[10] 刘清秉,项 伟,崔德山,等.离子土固化剂改良膨胀土的机理研究[J].岩土工程学报,2011,33(4):648-654.
[11] DEJONG J T, FRITZGES M B, NÜSSLEIN K. Microbially Induced Cementation to Control Sand Response to Undrained Shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(11): 1381-1392.
[12] 惠会清,胡同康,王新东.石灰、粉煤灰改良膨胀土性质机理[J].长安大学学报(自然科学版),2006,26(2):34-37.
[13] 陶福金.武汉至安康铁路襄胡段路基石灰改良膨胀土填料试验研究[J].路基工程,2011,29(5):115-117.
[14] 钱春香,王安辉,王 欣.微生物灌浆加固土体研究进展[J].岩土力学,2015,36(6):1537-1548.
[15] GB/T 50123—2019,土工试验方法标准[S]. 北京:中国计划出版社,2019.
[16] 全国农业技术推广服务中心.土壤分析技术规范 [M]. 2版.北京:中国农业出版社,2006.
[17] GB 50112—2013,膨胀土地区建筑技术规范[S].北京:中国建筑工业出版社,2012.
[18] 樊恒辉,孔令伟.分散性土研究[M].北京:中国水利水电出版社,2012.
[19] 刘文茂.谈谈黏土阳离子交换序中例外离子[J].景德镇陶瓷,1995,23(1):4-6.
[20] 秦爱芳,胡宏亮.碱性溶液饱和高庙子钙基膨润土膨胀特性及预测[J].岩土力学,2020, 41(增刊1):123-131.
[21] 陈宇龙.云南膨胀土的微观结构特征[J].岩土工程学报,2013,35(增刊1):334-339.

基金

国家自然科学基金项目(52079116);国家重点研发计划项目(2017YFC0504703)

PDF(1718 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map