木鱼包滑坡形变特征的InSAR监测分析

王尚晓, 李士垚, 牛瑞卿

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (4) : 77-84.

PDF(4820 KB)
PDF(4820 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (4) : 77-84. DOI: 10.11988/ckyyb.20201237
工程安全与灾害防治

木鱼包滑坡形变特征的InSAR监测分析

  • 王尚晓1, 李士垚2, 牛瑞卿2
作者信息 +

Monitoring Slope Displacements of Muyubao Landslide Using InSAR Analysis Technique

  • WANG Shang-xiao1, LI Shi-yao2, NIU Rui-qing2
Author information +
文章历史 +

摘要

三峡库区地质条件复杂,问题库岸斜坡众多,滑坡灾害问题一直十分突出,需要对三峡库区的灾害隐患进行日常监测。然而常规的监测手段往往需要耗费大量的人力物力,监测效果也容易受到外界条件的限制。以三峡巴东县城长江沿岸为研究区,基于ALOS-2数据,使用PS InSAR(永久散射体干涉测量)处理技术对2016年8月—2017年10月共22景ALOS-2数据进行处理,结合水文、地质和实地调查资料对木鱼包滑坡的滑动速率和规模等变形特征做了分析。结果表明:木鱼包滑坡在监测周期内处于缓慢的蠕动变形阶段,平均形变速率为10.4 mm/a,形变的主要影响因素是库水位的变化。

Abstract

The Three Gorges Reservoir area has been suffering from striking landslid disasters due to complex geological conditions and numerous slope problems, posing daily monitoring requirements. Conventional monitoring not only costs large amounts of manpower and material resources, and also is prone to be limited by external conditions. In the present research, 22 views of ALOS-2 satellite data from August 2016 to October 2017 of the Yangtze River bank in Badong County as the research area were processed using PS InSAR (permanent scatterer interferometry) technology to obtain accurate regional surface deformation results. In association with hydrology, geology and field investigation, the deformation characteristics such as sliding rate and scale of Muyubao landslide were analyzed. Results manifested that in the monitoring period, the Muyubao landslide was in a slow creep deformation stage, with an average deformation rate of 10.4 mm/a. Water level fluctuation was the major influential factor of landslide deformation.

关键词

滑坡 / 时序InSAR / 形变监测 / ALOS-2数据 / 三峡库区

Key words

landslide / time series InSAR / deformation monitoring / ALOS-2 data / Three Gorges Reservoir area

引用本文

导出引用
王尚晓, 李士垚, 牛瑞卿. 木鱼包滑坡形变特征的InSAR监测分析[J]. raybet体育在线 院报. 2022, 39(4): 77-84 https://doi.org/10.11988/ckyyb.20201237
WANG Shang-xiao, LI Shi-yao, NIU Rui-qing. Monitoring Slope Displacements of Muyubao Landslide Using InSAR Analysis Technique[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(4): 77-84 https://doi.org/10.11988/ckyyb.20201237
中图分类号: P694   

参考文献

[1] TOMÁS R,LI Z,LIU P,et al. Spatiotemporal Characteristics of the Huangtupo Landslide in the Three Gorges Region (China) Constrained by Radar Interferometry[J].Geophysical Journal International,2014,197(1):213-232.
[2] 黄润秋. 论滑坡预报[J]. 国土资源科技管理, 2004, 21(6):15-20.
[3] 霍东平, 张 彬, 彭军还,等. 滑坡变形监测技术研究现状与展望[J]. 工程勘察, 2015,43(8):62-67.
[4] 董文文,朱鸿鹄,孙义杰,等.边坡变形监测技术现状及新进展[J].工程地质学报,2016,24(6):1088-1095.
[5] FRUNEAU B , ACHACHE J, DELACOURT C. Observation and Modelling of the Saint-Etienne-de-Tinée Landslide Using SAR Interferometry[J]. Tectonophysics, 1996, 265(3/4):181-190.
[6] 廖明生, 唐 婧, 王 腾,等. 高分辨率SAR数据在三峡库区滑坡监测中的应用[J]. 中国科学:地球科学, 2012, 42(2): 217-229.
[7] 范青松,汤翠莲,陈 于,等. GPS与InSAR技术在滑坡监测中的应用研究[J]. 测绘科学,2006,31(5):60-62.
[8] ZEBKER H A, GOLDSTEIN R M. Topographic Mapping from Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B5): 4993-4999 .
[9] 张 毅. 基于 InSAR 技术的地表变形监测与滑坡早期识别研究:以白龙江流域中游为例[D]. 兰州:兰州大学, 2018.
[10] HOFFMANN J, GALLOWAY D L, ZEBKER H A. Calibrating a Regional Ground-water Flow and Subsidence Model in Antelope Valley, California, Using InSAR-derived Subsidence Maps[C] //AGU Fall Meeting Abstracts. American Geophysical Union. December 2001.
[11] BÜRGMANN R, ROSEN P A, FIELDING E J. Synthetic Aperture Radar Interferometry to Measure Earth’s Surface Topography and Its Deformation[J]. Annual Review of Earth and Planetary Sciences, 2000, 28(1):169-209.
[12] COLESANTI C, WASOWSKI J. Investigating Landslides with Space-borne Synthetic Aperture Radar (SAR) Interferometry[J]. Engineering Geology, 2006, 88(3/4):173-199.
[13] TOFANI V, RASPINI F, CATANI F,et al. Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring[J]. Remote Sensing, 2013, 5(3):1045-1065.
[14] FERRETTI A, PRATI C, ROCCA F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 1-20.
[15] BERARDINO P, FORNARO G, LANARI R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383.
[16] WANG T, PERISSIN D, LIAO M,et al. Deformation Monitoring by Long Term D-InSAR Analysis in Three Gorges Area, China[C] //Proceedings of IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2008. Boston, Massachusetts, USA. July 8-11, 2008.
[17] BIANCHINI S, CIGNA F, VENTISETTE C D,et al. Detecting and Monitoring Landslide Phenomena with TerraSAR-X Persistent Scatterers Data: The Gimigliano Case Study in Calabria Region (Italy)[C] //Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Doi: 10.1109/IGARSS.2012.6351237.
[18] HANDWERGER A L, ROERING J J, SCHMIDT D A. Controls on the Seasonal Deformation of Slow-moving Landslides[J]. Earth and Planetary Science Letters, 2013, 377/378: 239-247.
[19] FERRETTI A, SAVIO G, BARZAGHI R, et al. Submillimeter Accuracy of InSAR Time Series: Experimental Validation[J]. IEEE Transactions on Geoscience & Remote Sensing, 2007, 45(5): 1142-1153.
[20] 范景辉, 邱阔天, 夏 耶,等.三峡库区范家坪滑坡地表形变InSAR监测与综合分析[J]. 地质通报, 2017, 36(9):1665-1673.
[21] NISHIGUCHI T, TSUCHIYA S, IMAIZUMI F. Detection and Accuracy of Landslide Movement by InSAR Analysis Using PALSAR-2 data[J]. Landslides, 2017, 14: 1483-1490.
[22] 李 达, 邓喀中, 高晓雄,等. 基于SBAS-InSAR的矿区地表沉降监测与分析[J]. 武汉大学学报:信息科学版, 2018, 43(10):1531-1537.

基金

中国地质调查局项目(0431203,DD20190301,DD20190519)

PDF(4820 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map