温度示踪界面水文过程研究进展及发展趋势

董林垚, 唐文坚, 陈建耀, 何敏

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (4) : 21-26.

PDF(1182 KB)
PDF(1182 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (4) : 21-26. DOI: 10.11988/ckyyb.20201267
水资源

温度示踪界面水文过程研究进展及发展趋势

  • 董林垚1,2, 唐文坚1,2, 陈建耀3, 何敏4
作者信息 +

Interfacial Hydrological Process of Heat Tracing: Research Progresses and Development Trends

  • DONG Lin-yao1,2, TANG Wen-jian1,2, CHEN Jian-yao3, HE Min4
Author information +
文章历史 +

摘要

界面水文过程涉及不同圈层间物质循环与能量交换,是区域资源-生态-环境保护的关键环节。温度示踪工具具有成本低、易操作、无污染等优点,能够有效示踪水文过程,但界面能量交换机理复杂、影响因素多,温度示踪界面水文过程是研究的重难点。综述了降水—土壤水—地下水、地表水—地下水和地下水—海水界面水文过程的水热运移机理、温度示踪方法和应用案例,提出今后研究发展趋势:研究应充分考虑温度示踪界面水文过程的尺度效应;温度示踪方法计算结果具有一定不确定性,需多手段进行验证;引入新型温度监测技术,解决界面能量变化的大范围、长时间精准监测是提高示踪结果准确度的有效手段;构建适用于不同尺度、不同类型的多维水热运移模型是今后研究的重点方向。

Abstract

As an important link among regional resources, ecology and environment protection, interfacial hydrological process involves material circulation and energy exchange among different circles. Heat tracing of interfacial hydrological process is the focus and difficulty in future research due to the complex and widely-affected energy exchange process, notwithstanding its effectiveness in tracing hydrological process due to its low cost, easy operation and no pollution. In the present research, we made a review on the water and heat transport mechanism, heat tracing techniques, and typical heat tracing applications in the hydrological processes of rainfall-soil-groundwater, surface water-groundwater, as well as groundwater-sea water interfaces, and present the development trends in future: 1) scale effect in the interfacial hydrological process of heat tracing should be considered;2) multiple approaches are required to verify the uncertain heat tracing results; 3) novel temperature monitoring technique to monitoring large-scale and long-term interfacial energy change could be an effective means to improve the accuracy of results; 4) multi-dimensional water and heat transfer model suitable for different scales and types is the key direction of future research.

关键词

温度示踪 / 界面水文过程 / 研究进展 / 复杂环境 / 发展趋势

Key words

heat tracer / interface hydrological process / research progress / complex environment / development trend

引用本文

导出引用
董林垚, 唐文坚, 陈建耀, 何敏. 温度示踪界面水文过程研究进展及发展趋势[J]. raybet体育在线 院报. 2022, 39(4): 21-26 https://doi.org/10.11988/ckyyb.20201267
DONG Lin-yao, TANG Wen-jian, CHEN Jian-yao, HE Min. Interfacial Hydrological Process of Heat Tracing: Research Progresses and Development Trends[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(4): 21-26 https://doi.org/10.11988/ckyyb.20201267
中图分类号: P641   

参考文献

[1] 刘昌明, 王中根, 杨胜天,等. 地表物质能量交换过程中的水循环综合模拟系统(HIMS)研究进展[J]. 地理学报, 2014, 69(5): 579-587.
[2] 王焰新, 马 腾, 郭清海, 等. 地下水与环境变化研究[J]. 地学前缘, 2005(增刊1): 14-21.
[3] 束龙仓, 朱元生, 孙庆义,等. 地下水资源评价结果的可靠性探讨[J]. 水科学进展, 2000,11(1): 21-24.
[4] SU G W, JASPERSE J, SEYMOUR D, et al. Estimation of Hydraulic Conductivity in an Alluvial System Using Temperatures[J]. Groundwater, 2010, 42(6/7): 890-901.
[5] 马 瑞, 董启明, 孙自永,等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J]. 地质科技情报, 2013, 3(2): 131-137.
[6] 董林垚, 陈建耀, SHIMADA Jun. 地温示踪技术在地下水科学中的应用研究进展[J]. raybet体育在线 院报, 2018, 35(12): 39-45.
[7] KURYLYK B L,MACQUARRIE K T B,MCKENZIE J M. Climate Change Impacts on Groundwater and Soil Temperatures in Cold and Temperate Regions: Implications, Mathematical Theory, and Emerging Simulation Tools[J]. Earth-Science Reviews,2014,138:313-334.
[8] IRVINE D J, KURYLYK B L, CARTWRIGHT I, et al. Groundwater Flow Estimation Using Temperature-Depth Profiles in a Complex Environment and a Changing Climate[J]. Science of the Total Environment, 2017, 574(1): 272-281.
[9] TANIGUCHI M, SHIMADA J, UEMURA T. Transient Effects of Surface Temperature and Groundwater Flow on Subsurface Temperature in Kumamoto Plain, Japan[J]. Physics & Chemistry of the Earth, 2003, 28(9): 477-486.
[10] POLLACK H N, HUANG S. Climate Reconstruction from Subsurface Temperatures[J]. Annual Review of Earth & Planetary Sciences, 2000, 28(1): 339-365.
[11] ANDERSON M P. Heat as a Ground Water Tracer[J]. Ground Water, 2010, 43(6): 951-968.
[12] BREDEHOEFT J D, PAPAOPULOS I S. Rates of Vertical Groundwater Movement Estimated from the Earth’s Thermal Profile[J]. Water Resources Research, 1965, 1(2): 12-15.
[13] MENBERG K, BLUM P, KURYLYK B L,et al. Observed Groundwater Temperature Response to Recent Climate Change[J]. Hydrology & Earth System Sciences Discussions, 2014, 11(3): 4453-4466.
[14] HERB W R, JANKE B, MOHSENI O, et al. Ground Surface Temperature Simulation for Different Land Covers[J]. Journal of Hydrology, 2008, 356(3): 327-343.
[15] TAYLOR C A, STEFAN H G. Shallow Groundwater Temperature Response to Climate Change and Urbanization[J]. Journal of Hydrology, 2009, 375(3): 601-612.
[16] TANIGUCHI M, SHIMADA J, TANAKA T, et al. Disturbances of Temperature-Depth Profiles Due to Surface Climate Change and Subsurface Water Flow: 1. An Effect of Linear Increase in Surface Temperature Caused by Global Warming and Urbanization in the Tokyo Metropolitan Area, Japan[J]. Water Resources Research, 1999, 35(5): 1507-1518.
[17] ARRIAGA M A, LEAP D I. Using Solver to Determine Vertical Groundwater Velocities by Temperature Variations, Purdue University, Indiana, USA[J]. Hydrogeology Journal, 2006, 14(1/2): 253-263.
[18] KURYLYK B L, IRVINE D J, CAREY S K, et al. Heat as a Groundwater Tracer in Shallow and Deep Heterogeneous Media: Analytical Solution, Spreadsheet Tool, and Field Applications[J]. Hydrological Processes, 2017, 31(14): 2648-2661.
[19] XIE Y, BATULLE-AGUILAR J. Limits of Heat as a Tracer to Quantify Transient Lateral River-Aquifer Exchanges[J]. Water Resources Research, 2017, 53(9): 7740-7755.
[20] SALEM Z E, TANIGUCHI M, SAKURA Y. Use of Temperature Profiles and Stable Isotopes to Trace Flow Lines: Nagaoka Area, Japan[J]. Ground Water, 2010, 42(1): 83-91.
[21] MA R, ZHENG C, ZACHARA J M, et al. Utility of Bromide and Heat Tracers for Aquifer Characterization Affected by Highly Transient Flow Conditions[J]. Water Resources Research, 2012, 48(8): 1-18.
[22] WILDEMEERSCH S, JAMIN P, ORBAN P,et al. Coupling Heat and Chemical Tracer Experiments for Estimating Heat Transfer Parameters in Shallow Alluvial Aquifers[J]. Journal of Contaminant Hydrology, 2014, 169: 90-99.
[23] KLEPIKOVA M, WILDEMEERSCH S, HERMANS T, et al. Heat Tracer Test in an Alluvial Aquifer: Field Experiment and Inverse Modelling[J]. Journal of Hydrology, 2016, 540: 812-823.
[24] TANIGUCHI M. Evaluations of the Saltwater-Groundwater Interfacefrom Borehole Temperature in a Coastal Region[J]. Geophysical Research Letters, 2000, 27(5): 713-716.
[25] TANIGUCHI M, TURNER V J, SMITH A J. Evaluations of Groundwater Discharge Rates from Subsurface Temperature in Cockburn Sound, Western Australia[J]. Biogeochemistry, 2003, 66: 111-124.
[26] TANIGUCHI M, UEMURA T, JAGOON K. Combined Effects of Urbanization and Global Warming on Subsurface Temperature in Four Asian Cities[J]. Vadose Zone Journal, 2007, 6(3): 591-596.
[27] KURYLYK B L, MACQUARRIE K T B, CAISSIE D, et al. Shallow Groundwater Thermal Sensitivity to Climate Change and Land Cover Disturbances: Derivation of Analytical Expressions and Implications for Stream Temperature Modeling[J]. Hydrology and Earth System Sciences, 2015, 19(5): 2469-2489.
[28] STALLMAN R W. Computation of Groundwater Velocity from Temperature Data[J]. USGS Water Supply Paper, 1963, 1544: 36-46.
[29] TANIGUCHI M, WILLIAMSON D R, PECK A J. Disturbances of Temperature-Depth Profiles Due to Surface Climate Change and Subsurface Water Flow: 2. An Effect of Step Increase in Surface Temperature Caused by Forest Clearing in Southwest Western Australia[J]. Water Resources Research,, 1999, 35(5): 1519-1529.
[30] KURYLYK B L, MACQUARRIE K T B. A New Analytical Solution for Assessing Climate Change Impacts on Subsurface Temperature[J]. Hydrological Processes, 2014, 28(7): 3161-3172.
[31] IRVINE D J, CARTWRIGHT I, POST V E A, et al. Uncertainties in Vertical Groundwater Fluxes from 1-D Steady State Heat Transport Analyses Caused by Heterogeneity, Multidimensional Flow and Climate Change[J]. Water Resources Research, 2016, 52(2): 813-826.
[32] KURYLYK B L, IRVINE D J. Analytical Solution And Computer Program (FAST) to Estimate Fluid Fluxesfrom Subsurface Temperature Profiles[J]. Water Resources Research, 2016, 52(2): 725-733.
[33] CONSTANTZ J. Heat as a Tracer to Determine Streambed Water Exchanges[J]. Water Resources Research, 2008, 44(4): 1-20.
[34] RAU G C, ANDERSEN M S, MCCALLUM A M, et al. Heat as a Tracer to Quantify Water Flow in Near-Surface Sediments[J]. Earth-Science Reviews,2014,129:40-58.
[35] ALEXANDER M D, CAISSIE D. Variability and Comparison of Hyporheic Water Temperatures and Seepage Fluxes in a Small Atlantic Salmon Stream[J]. Ground Water, 2010, 41(1): 72-82.
[36] HATCH C E, FISHER A T, REVENAUGH J S, et al. Quantifying Surface Water-Groundwater Interactions Using Time Series Analysis of Streambed Thermal Records: Method Development[J]. Water Resources Research, 2006, 42(10): 1- 14.
[37] LOHEIDES P,GORELICK S M.Quantifying Stream-Aquifer Interactions through the Analysis of Remotely Sensed Thermographic Profiles and In-situ Temperature Histories[J]. Environmental ence & Technology, 2006, 40(10):3336-3341.
[38] LOHEIDE S P, GORELICK S M. Riparian Hydroecology: A Coupled Model of the Observed Interactions between Groundwater Flow and Meadow Vegetation Patterning[J]. Water Resources Research, 2007, 43(7): doi:10.1029/2006WR005233.
[39] SELKER J, GIESEN N V D, WESTHOFF M, et al. Fiber Optics Opens Window on Stream Dynamics[J]. Geophysical Research Letters, 2006, 33(24), doi:10.1029/2006GL027979.
[40] SELKER J, THÉVENAZ L, HUWALD H,et al. Distributed Fiber-Optic Temperature Sensing for Hydrologic Systems[J]. Water Resources Research, 2006, 42(12), doi: 10.1029/2006WR005326.
[41] 高茂生,朱远峰.中国海岸带环境水文地质问题及防治[J].海洋地质动态,2006, 22(5):8-10.
[42] 李海龙,万 力,焦赳赳.海岸带水文地质学研究中的几个热点问题[J].地球科学展,2011,26(7):685-694.
[43] DONG L, FU C, LIU J,et al. Disturbances of Temperature-Depth Profiles by Surface Warming and Groundwater Flow Convection in Kumamoto Plain, Japan[J]. Geofluids, 2018, doi:10.1155/2018/8451276.
[44] 董林垚,喻志强,徐金鑫.地温示踪地表暖化过程中的气候变化和城市热岛效应[J].热带地理,2018,38(2):236-243.
[45] LI S, DONG L, CHENJ, et al. Vertical Groundwater Flux Estimation from Borehole Temperature Profiles by a Numerical Model, RFLUX[J]. Hydrological Processes, 2019, 33(11): 1542-1552.
[46] DONG L, XU W, QIAN F,et al. Evaluation of Vertical Groundwater Flux from Borehole Temperatures: A Case Study in the Leizhou Peninsula, South China[J]. Environmental Earth Sciences, 2020, 79(8), doi: 10.1007/s12665-020-08918-3.
[47] 董林垚,任洪玉,雷俊山,刘纪根.地表暖化影响下温度示踪地下水流速方法[J].吉林大学学报(地球科学版),2019,49(3):774-784.

基金

国家重点研发计划项目(2021YFE0111900);国家自然科学基金项目(41977171)

PDF(1182 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map