低应变状态下橡胶混凝土细观裂缝数值分析

李厚民, 吴克洋, 柯俊宏, 汪洋

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (4) : 149-155.

PDF(3933 KB)
PDF(3933 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (4) : 149-155. DOI: 10.11988/ckyyb.20201331
水工结构与材料

低应变状态下橡胶混凝土细观裂缝数值分析

  • 李厚民, 吴克洋, 柯俊宏, 汪洋
作者信息 +

Numerical Analysis of Micro-cracks in Rubber Concrete under Low Strain Conditions

  • LI Hou-min, WU Ke-yang, KE Jun-hong, WANG Yang
Author information +
文章历史 +

摘要

为了研究橡胶混凝土内部微裂缝的开展形态和影响裂缝开展的原因,基于APDL语言对ANSYS进行二次开发,建立了由砂浆、骨料、橡胶、橡胶-砂浆界面、骨料-砂浆界面五相组成的随机骨料模型,进行了橡胶混凝土压缩模拟,并在此基础上使用灰度识别对各级配骨料及橡胶分布与裂缝分布的关系进行了研究。结果表明裂缝在橡胶分布密集区域快速开展,低橡胶掺量时裂缝像素个数与橡胶分布密集度成正比;高橡胶掺量时裂缝像元个数随橡胶分布密集度的提高先减少后提高。

Abstract

To explore the propagation form of micro-cracks in rubber concrete and the factors affecting crack propagation, a random aggregate model composed of five phases (mortar, aggregate, rubber, rubber-mortar interface, and aggregate-mortar interface) was established by ANSYS redevelopment in APDL language. The model was applied to simulating the compression of rubber concrete, and on such basis, the relations of aggregate gradation with rubber and cracks distribution were examined by using grayscale recognition. Results illustrated that cracks developed rapidly in areas with dense rubber distribution. The number of crack pixels was proportional to the density of rubber distribution in the presence of low rubber content; when rubber content was high, the number of crack pixels first decreased and then increased with the densification of rubber distribution.

关键词

橡胶混凝土 / 细观裂缝 / 灰度识别 / 有限元分析 / ANSYS二次开发

Key words

rubber concrete / micro-crack / grayscale recognition / finite element analysis / ANSYS redevelopment

引用本文

导出引用
李厚民, 吴克洋, 柯俊宏, 汪洋. 低应变状态下橡胶混凝土细观裂缝数值分析[J]. raybet体育在线 院报. 2022, 39(4): 149-155 https://doi.org/10.11988/ckyyb.20201331
LI Hou-min, WU Ke-yang, KE Jun-hong, WANG Yang. Numerical Analysis of Micro-cracks in Rubber Concrete under Low Strain Conditions[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(4): 149-155 https://doi.org/10.11988/ckyyb.20201331
中图分类号: TU528   

参考文献

[1] 胡艳丽, 高培伟, 李富荣, 等.不同取代率的橡胶混凝土力学性能试验研究[J].建筑材料学报, 2020, 23(1):85-92.
[2] 李厚民,陶丽梅,舒 展.橡胶混凝土在钢筋混凝土框架结构中的应用[J].建筑结构,2019,49(23):123-126.
[3] 亢景付,任海波,张平祖.橡胶混凝土的抗裂性能和弯曲变形性能[J].复合材料学报,2006,23(6):158-162.
[4] 熊 杰, 郑 磊, 袁 勇.废橡胶混凝土抗压强度试验研究[J].混凝土, 2004(12):40-42.
[5] HONG Shu-xian, LIU Peng, ZHANG Jian-chao, et al. Interior Fracture Analysis of Rubber-Cement Composites Based on X-Ray Computed Tomography and Digital Volume Correlation[J]. Construction and Building Materials, 2020, 259: 119833.
[6] 王飞阳, 黄宏伟, 张东明,等.带裂缝服役混凝土结构力学性能的多尺度模拟方法[J].建筑结构学报, 2019, 40(12):155-162.
[7] 杨克荣, 彭 刚, 柏 巍.基于ANSYS的混凝土微观层次开裂演化数值模拟[J].混凝土, 2009(2):8-10,31.
[8] 刘 锋, 钟根全, 夏晓舟,等.基于细观层次橡胶混凝土单轴受压力学分析[J].建筑材料学报, 2010, 13(16):733-738.
[9] 胡 俊, 王 杰, 李兆瑞,等.基于随机骨料模型的混凝土细观力学特性分析[J].应用力学学报, 2017, 34(4):802-808.
[10] 周静海, 郭易奇, 王晓天,等.骨料分布对再生混凝土抗压强度的影响[J].混凝土, 2017(4):25-28.
[11] 任青文, 殷亚娟, 沈 雷.混凝土骨料随机分布的分形研究及其对破坏特性的影响[J].水利学报,2020,51(10):1267-1277.
[12] SCHLANGEN E, MIER J G M V. Simple Lattice Model for Numerical Simulation of Fracture of Concrete Materials and Structures[J]. Materials & Structures, 1992, 25(9): 534-542.
[13] 袁 群, 冯凌云, 曹宏亮, 等.橡胶混凝土的应力-应变曲线试验[J].建筑科学与工程学报, 2013, 30(3):96-100.

PDF(3933 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map