碳纤维作为生物膜载体具有一定脱氮能力,但存在自然挂膜周期较长、挂膜初期水质净化能力较差等问题。为提高碳纤维的挂膜与脱氮效果,采用除氮菌剂人工强化碳纤维挂膜,探究除氮菌剂对碳纤维固载微生物膜的强化作用,并查明挂膜成熟后碳纤维的脱氮性能。结果表明,除氮菌剂可显著强化碳纤维的挂膜效果,强化挂膜组碳纤维上的微生物量和微生物碳源代谢活性较自然挂膜组显著提高,其中,强化挂膜组碳纤维上的微生物量峰值是自然挂膜组的10.3倍,微生物碳源代谢活性是自然挂膜组的3.5倍。强化挂膜碳纤维的脱氮效果显著提高,与自然挂膜碳纤维组相比,强化挂膜碳纤维组的总氮和氨氮削减率分别提高了8.0和14.1个百分点。研究成果可为应用人工强化挂膜碳纤维治理富营养化水体提供科学依据与技术支撑。
Abstract
Carbon fiber as a biofilm carrier has denitrification ability yet with long biofilm formation period and inferior initial water purification capacity. To improve the film-forming and denitrification performance of carbon fiber, nitrogen-removing bacteria was adopted to strengthen the film-forming effect of carbon fiber. The strengthening effect of nitrogen removal agent on carbon fiber supported microbial membrane was explored, and the denitrification performance of carbon fiber undergone film-forming was also examined. Results unveiled that the film-forming performance of carbon fiber could be significantly enhanced by nitrogen-removing bacteria. The microbial biomass and carbon source metabolic activity of microorganisms of carbon fibers in the enhanced membrane group were significantly higher than those in the natural membrane group, with the peak value of microbial biomass of the enhanced membrane group 10.3 times that in the natural membrane group, and carbon source metabolic activity of microorganisms 3.5 times that in the natural membrane group. Moreover, the nitrogen removal efficiency of strengthened carbon fiber was significantly improved, with the reduction rates of total nitrogen and ammonia nitrogen of strengthened membrane carbon fiber group increasing by 8.0% and 14.1%, respectively, compared with the natural membrane carbon fiber group. The research findings offer scientific basis and technical support for applying artificially strengthened carbon fiber to eutrophication treatment.
关键词
碳纤维 /
除氮菌剂 /
挂膜 /
脱氮 /
微生物量
Key words
carbon fiber /
nitrogen-removing bacteria /
film-forming /
denitrification /
microbial biomass
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] PIAO S,CIAIS P,HUANG Y,et al.The Impacts of Climate Change on Water Resources and Agriculture in China[J]. Nature, 2010, 467(7311): 43-51.
[2] MEYNET P, DAVENPORT R J, JONES D M, et al. Changes in Polycyclic Aromatic Hydrocarbon Availability in River Tyne Sediment Following Bioremediation Treatments or Activated Carbon Amendment[J]. Water Research, 2010, 44(15): 4529-4536.
[3] JUANG D F, TSAI W P, LIU W K. Treatment of Polluted River Water by a Gravel Contact Oxidation System Constructed under Riverbed[J]. International Journal of Environmentalence & Technology, 2008, 5(3): 305-314.
[4] WU W, LIU Y, ZHU Q, et al. Remediation of Polluted River Water by Biological Contact Oxidation Process Using Two Types of Carriers[J]. International Journal of Environment & Pollution, 2009, 38(3): 223-234.
[5] JIAO Y, ZHAO Q, JIN W, et al. Bioaugmentation of a Biological Contact Oxidation Ditch with Indigenous Nitrifying Bacteria for In Situ Remediation of Nitrogen-rich Stream Water[J]. Bioresource Technology, 2011, 102(2): 990-995.
[6] NEAGU L, CIRSTEA D M, CURUTIU C, et al. Microbial Biofilms from the Aquatic Ecosystems and Water Quality[J]. Water Purification, 2017, 6: 621-642.
[7] 银玉容,施召才.活性炭纤维吸附去除甲苯综合性实验[J].实验技术与管理,2016, 33(6): 28-30.
[8] 童 婧,杨朝晖,曾光明,等.锆、铁氧化物改性活性炭纤维的制备及其除磷性能[J].环境工程学报,2016, 10(6): 2881-2888.
[9] 唐心红,宋 敏,孙 飞.活性炭纤维对有机废水的吸附研究[J].工业用水与废水,2016, 47(4): 53-57.
[10]CHEN Y W, LIU M Q, XU F Y, et al. Phenol Biodegradation and Simultaneous Nitrogen Removal Using a Carbon Fiber Felt Biofilm Reactor[J]. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 2010, 62(5): 1052-1059.
[11]RATAN J K, KAUR M, ADIRAJU B. Synthesis of Activated Carbon from Agricultural Waste Using a Simple Method: Characterization, Parametric and Isotherms Study[J]. Materials Today: Proceedings, 2018, 5(2): 3334-3345.
[12]梁益聪,胡湛波,涂玮灵,等.碳素纤维生态基技术对城市黑臭水体的修复效果[J].环境工程学报,2015, 9(2): 603-608.
[13]李 兰,索帮成,常布辉,等.碳素纤维改性及其在富营养化水体中的挂膜实验[J].中国农村水利水电,2013(3): 53-57.
[14]姚理为,余 辉,田学达,等.碳素纤维对富营养化水体的水质改善与对藻类群落结构的影响[J].环境科学研究,2012, 25(8): 49-55.
[15]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
[16]朱小彪,许春华,高宝玉,等.曝气生物滤池生物量和生物活性的试验研究[J].环境科学学报,2007, 27(7): 1135-1140.
[17]席劲瑛,胡洪营,钱 易.Biolog方法在环境微生物群落研究中的应用[J].微生物学报,2003,43(1):138-141.
[18]杜 萍,刘晶晶,沈李东,等.Biolog和PCR-DGGE技术解析椒江口沉积物微生物多样性[J].环境科学学报,2012, 32(6): 1436-1444.
[19]田伟君,翟金波.生物膜技术在污染河道治理中的应用[J].环境保护,2003, 31(8): 19-21.
[20]海 景,黄尚东,程 江,等.水处理用塑料生物膜载体改性研究进展[J].合成材料老化与应用,2006, 35(4): 41-45.
[21]苗伟红.人工湿地填料处理污水的试验研究[D].南京:河海大学,2006.
[22]MATSUMOTO S, OHTAKI A, HORI K. Carbon Fiber as an Excellent Support Material for Wastewater Treatment Biofilms[J]. Environmental Science & Technology, 2012, 46(18): 10175-10181.
[23]车荣晓,王 芳,王艳芬,等.土壤微生物总活性研究方法进展[J].生态学报,2016, 36(8): 2103-2112.
[24]周娟娟,胡中华,刘亚菲,等.生物活性碳纤维的制备及其水处理[J].新型炭材料,2006, 21(1): 64-69.
[25]郑 璐,高乃云,甘 霖,等.固定化生物活性炭快速启动处理微污染水[J].环境工程学报,2015, 9(11): 5231-5236.
[26]PYNAERT K, SMETS B F, WYFFELS S, et al. Characterization of an Autotrophic Nitrogen-Removing Biofilm from a Highly Loaded Lab-Scale Rotating Biological Contactor[J]. Applied and Environmental Microbiology, 2003, 69(6): 3626-3635.
[27]WANG J,WANG Y,BAI J,et al. High Efficiency of Inorganic Nitrogen Removal by Integrating Biofilm-Electrode with Constructed Wetland: Autotrophic Denitrifying Bacteria Analysis[J]. Bioresource Technology,2016,227:7-14.
[28]张丽萍,袁文权,张锡辉.底泥污染物释放动力学研究[J].环境污染治理技术与设备,2003, 4(2): 22-26.
[29]LIAO X, CHAO C, CHANG C H, et al. Heterogeneity of Microbial Community Structures Inside the Up-flow Biological Activated Carbon (BAC) Filters for the Treatment of Drinking Water[J]. Biotechnology & Bioprocess Engineering, 2012, 17(4): 881-886.
基金
国家自然科学基金区域创新发展联合基金重点项目(U21A20156);中国长江三峡集团有限公司科研项目(0704106)