长江流域水体硅含量分布特征及影响因素研究综述

俞洋, 汤显强, 王丹阳, 黎睿

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (3) : 38-46.

PDF(1324 KB)
PDF(1324 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (3) : 38-46. DOI: 10.11988/ckyyb.20201288
水环境与水生态

长江流域水体硅含量分布特征及影响因素研究综述

  • 俞洋1,2,3, 汤显强1,2, 王丹阳1,2, 黎睿1,2
作者信息 +

A Review on the Distribution Characteristics and Influencing Factors of Silicon Content in Waters of Yangtze River Basin

  • YU Yang1,2,3, TANG Xian-qiang1,2, WANG Dan-yang1,2, LI Rui1,2
Author information +
文章历史 +

摘要

随着“长江大保护”的推进,长江流域水体中浮游生物的生长状态成为日益热门的话题。硅作为六大生源要素之一,是影响浮游生物生长繁殖的要素之一,对流域生态系统的结构和稳定起到至关重要的作用。首先介绍了河流中硅的形态分类,讨论了对不同形态硅的研究意义。随后综述了国内外研究成果,对长江流域硅含量的时空分布特征进行整理分析,探讨可能影响河流、水库及河口硅含量分布的因素,对比分析了长江与国内外其他河流硅含量差异的原因,展望了长江流域硅含量当前研究的不足及未来研究方向。研究成果可为硅元素对长江流域浮游生物生长的影响等相应研究提供思路与建议。

Abstract

With the promotion of “Great Protection of the Yangtze River”, the growth status of plankton in the Yangtze River water body has become an increasingly hot topic. Silicon, as one of the six source elements, is one of the factors that affect the growth and reproduction of plankton, and plays a vital role in the structure and stability of watershed ecosystem. In this paper, the morphological classification of silicon in rivers is introduced at first, and the significance of researching different forms of silicon is discussed. Subsequently, recent research findings in China and abroad are summarized, including the spatial and temporal distribution patterns of silicon concentration in Yangtze River Basin, and the factors which might affect silicon concentration distribution in rivers, reservoirs, and estuaries. In addition, the causes for the differences in silicon content between the Yangtze River and other rivers are compared and examined, the shortcomings of current researches are analyzed, and future research fields are prospected. The present research offers ideas and suggestions for corresponding research on the influence of silicon on the growth of plankton in the Yangtze River Basin.

关键词

长江流域水体 / 生物硅 / 溶解硅 / 硅含量 / 水环境

Key words

waters of Yangtze River Basin / BSi / DSi / silicon content / water environment

引用本文

导出引用
俞洋, 汤显强, 王丹阳, 黎睿. 长江流域水体硅含量分布特征及影响因素研究综述[J]. raybet体育在线 院报. 2022, 39(3): 38-46 https://doi.org/10.11988/ckyyb.20201288
YU Yang, TANG Xian-qiang, WANG Dan-yang, LI Rui. A Review on the Distribution Characteristics and Influencing Factors of Silicon Content in Waters of Yangtze River Basin[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(3): 38-46 https://doi.org/10.11988/ckyyb.20201288
中图分类号: X522   

参考文献

[1] LI Mao-tian, XU Kai-qin, MASATAKA W, et al. Long-term Variations in Dissolved Silicate, Nitrogen, and Phosphorus Flux from the Yangtze River into the East China Sea and Impacts on Estuarine Ecosystem[J]. Estuarine, Coastal and Shelf Science, 2007, 71: 3-12.
[2] 蒲新明, 吴玉霖, 张永山. 长江口区浮游植物营养限制因子的研究:秋季的营养限制情况[J]. 海洋学报:中文版, 2000, 22(4): 60-66.
[3] 李亚力, 沈志良, 线薇微. 长江口营养盐结构特征及其对浮游植物的限制[J].海洋科学, 2015, 39(4): 125-135.
[4] 王江涛, 曹 婧. 长江口海域近 50 年来营养盐的变化及其对浮游植物群落演替的影响[J]. 海洋环境科学, 2012, 31(3): 310-315.
[5] CARLISLE E M. Silicon: A Possible Factor in Bone Calcification[J]. Science, 1970, 167(3916): 279-280.
[6] 冉祥滨, 于志刚, 臧家业, 等. 地表过程与人类活动对硅产出影响的研究进展[J]. 地球科学进展, 2013, 28(5): 577-587.
[7] 臧家业, 王 昊, 刘 军, 等.生物硅组成及对硅循环影响的研究进展[J]. 海洋科学进展, 2020, 38(1): 11-20.
[8] 麻 涛, 何 江, 高际玫, 等. 呼伦湖沉积物生物硅的分布特征[J]. 农业环境科学学报, 2012, 31(4): 832-837.
[9] 吕昌伟, 崔 萌, 高际玫.硅在湖泊沉积物上的吸附特征及形态分布研究[J]. 环境科学,2012, 33(1): 135-141.
[10]赵 彬, 姚 鹏, 杨作升, 等. 大河影响下的边缘海反风化作用[J]. 地球科学进展, 2018, 33(1): 42-51.
[11]LEHTIMAKI M, TALLBERG P, SIIPOLA V. Seasonal Dynamics of Amorphous Silica in Vantaa River Estuary[J]. Silicon, 2013, 5(1): 35-51.
[12]游海涛,王利贤. 沉积物中生物硅的测定及其古气候意义[J]. 海洋地质前沿, 2012, 28(8): 14-19.
[13]HURD D C. Physical and Chemical Properties of Siliceous Skeletons[M]//ASTON S R. Silicon Geochemistry and Biogeochemistry. Britain: Academic Press, 1983: 187-244.
[14]RAGUENEAU O, CHAUVAUD L, LEYNAERT A,et al. Direct Evidence of a Biologically Active Coastal Silicate Pump: Ecological Implications[J]. Limnology and Oceanography, 2002, 47(6): 1849-1854.
[15]汪雅露, 袁华茂, 宋金明, 等. 胶州湾沉积物-海水界面硅的交换速率及其影响因素探讨[J]. 海洋学报, 2016, 38(12): 55-65.
[16]DÜRR H H, MEYBECK M, HARTMANN J, et al. Global Spatial Distribution of Natural Riverine Silica Inputs to the Coastal Zone[J] Bio-geosciences Discuss, 2009, 6: 1345-1401.
[17]于 宇, 宋金明, 李学刚, 等. 沉积物生源要素对水体生态环境变化的指示意义[J]. 生态学报, 2012, 32(5): 1623-1632.
[18]李浩帅, 刘淑民, 陈洪涛, 等. 长江口及邻近海域表层沉积物中的生物硅[J]. 中国海洋大学学报:自然科学版, 2015, 45(12): 72-79.
[19]张昭怡. 硅藻生物硅生产速率研究[D].天津:天津科技大学, 2018.
[20] 郭鸿博. 三峡水库硅的分布特征及其收支与循环[D].青岛:中国海洋大学, 2008.
[21]李茂田, 程和琴. 近50年来长江入海溶解硅通量变化及其影响[J]. 中国环境科学, 2001, 21(3): 193-197.
[22]王 昊, 冉祥滨, 臧家业, 等. 长江与黄河入海活性硅输送规律及变化趋势[J]. 湖泊科学, 2018, 30(5):1246-1259.
[23]牟京龙,张珊珊,梁 翠,等.长江口水域营养盐时空分布及其迁移过程[J].海洋科学,2020,44(1):19-35.
[24]李晓东. 大坝控制下嘉陵江河水硅氮营养物质的季节和空间变化特征[C]//中国矿物岩石地球化学学会第13届学术年会论文集. 广州,2011: 406.
[25]李兆喜, 高 扬, 陆 瑶. 鄱阳湖流域多尺度碳硅输送特征及其对浮游植物分布的影响[J]. 生态学报, 2020, 40(19): 1-11.
[26]吴兴华, 殷大聪. 2015—2016年汉江中下游硅藻水华发生成因分析[J]. 水生态学杂志, 2017, 38(6): 19-26.
[27]王立军. 赣江流域与乌江流域溶解态硅的生物地球化学特征及其控制因素[D].北京:首都师范大学, 2009.
[28]冉祥滨. 三峡水库营养盐分布特征与滞留效应研究[D].青岛:中国海洋大学, 2009.
[29]李斯奇, 崔高仰, 李亲凯, 等. 嘉陵江梯级水库水化学特征及氮硅的时空分布研究[J]. 地球与环境, 2018, 46(4): 321-330.
[30]朱 俊, 刘丛强, 王雨春, 等. 乌江渡水库中溶解性硅的时空分布特征[J]. 水科学进展, 2006, 17(3): 330-333.
[31]王立嘉, 王宝利. 三岔河梯级水库生源要素的时空变化特征[J]. 地球与环境, 2019,47(6): 844-850.
[32]李晶莹, 张 经. 流域盆地的风化作用与全球气候变化[J]. 地球科学进展, 2002, 17(3): 411-419.
[33]MEYBECK M. Total Mineral Dissolved Transport by World Major Rivers[J]. Hydrological Sciences Bulletin, 1976, 26: 265-282.
[34]沈志良. 长江干流营养盐通量的初步研究[J]. 海洋与湖沼, 1997, 28(5): 522-528.
[35]张欣泉. 长江干流及河口硅的生物地球化学研究[D]. 青岛:中国海洋大学, 2006.
[36]刘淑民. 长江口及邻近海域悬浮物和沉积物中生物硅的研究[D]. 青岛:中国海洋大学, 2013.
[37]金翔龙. 东海海洋地质[M]. 北京:海洋出版社, 1992.
[38]雷云逸, 汪福顺. 乌江流域水库沉积物中生物硅的测定方法及其环境意义[J]. 矿物学报, 2011, 21(1): 30-35.
[39]秦亚超. 珠江口沉积硅的生物地球化学研究[D]. 杭州:浙江大学, 2006.
[40]水利部长江水利委员会. 长江流域及西南诸河水资源公报[R]. 武汉:长江水利委员会,2019.
[41]水利部长江水利委员会. 长江泥沙公报[R].武汉:长江水利委员会, 2019.
[42]水利部长江水利委员会. 长江流域水土保持公报[R]. 武汉:长江水利委员会,2018.
[43]水利部黄河水利委员会. 黄河水资源公报[R]. 郑州:黄河水利委员会,2019.
[44]水利部黄河水利委员会. 黄河泥沙公报[R]. 郑州:黄河水利委员会, 2019.
[45]张启舜. 美国1993年密西西比河的洪水[J]. 河海科技进展, 1994, 14(1): 9-11.
[46]MESELHE E A, GEORGIOU I, ALLISON M A,et al. Numerical Modeling of Hydrodynamics and Sediment Transport in Lower Mississippi at a Proposed Delta Building Diversion[J]. Journal of Hydrology, 2012, 472/473: 340-354.
[47]B·哈姆杜杜. 气候变化对刚果河英加瀑布水资源和水力发电的影响[J]. 水利水电快报, 2016, 37(4):13-16.
[48]COYNEL A, SEYLER P, ETCHEBER H, et al. Spatial and Seasonal Dynamics of Total Suspended Sediment and Organic Carbon Species in the Congo River[J]. Global Biogeochemical Cycles, 2005, 19(4): 1-17.
[49]RACHOLD V,ALABYAN A,HUBBERTEN H W,et al. Sediment Transport to the Laptev Sea:Hydrology and Geochemistry of the Lena River[J].Wiley Online Library, 1996, 15(2): 183-196.
[50]ASSELMAN N E M. Suspended Sediment Dynamics in a Large Drainage Basin: The River Rhine[J]. Hydrological Processes, 1999(13): 1437-1450.
[51]高云飞, 张 栋. 1990—2019年黄河流域水土流失动态变化分析[J]. 中国水土保持, 2020(10): 64-67.
[52]刘 森, 臧家业.不同生境中生物硅的含量、组成及溶解过程[D]. 青岛:国家海洋局第一海洋研究所, 2015.
[53]TREGUER P, NELSON D M, VAN BENNEKOM A J, et al. The Silica Balance in the World Ocean: A Reestimate[J]. Science, 2012, 268: 375-379.
[54]PINET P, SOURIAU M. Continental Erosionand Large-Scale Relief[J]. Tectonics, 1988, 7(3): 563-582.
[55]WHITE A D, BLUM A E. Effects of Climate on Chemical Weathering in Watersheds[J]. Geochimica et Cosmochimica Acta, 1995, 59(9): 1729-1747.
[56]赵 越, 杨金玲. 模拟酸雨淋溶下强风化土壤矿物风化计量关系研究[J]. 土壤学报, 2019, 56(2): 310-319.
[57]陈景生. 川贵地区长江干支流河水主要离子含量变化趋势及分析[J]. 中国环境科学, 1998, 18(2): 131-135.
[58]黄雨榴, 李小倩, 刘运德, 等. 长江干流枯水期河水硫酸盐同位素组成特征及其来源解析[J]. 地质学报, 2015(增刊): 269-271.
[59]新思界产业研究中心. 2020—2025年中国硅肥行业应用市场需求及开拓机会研究报告[R]. 北京: 新思界产业研究中心,2019.
[60]闫维东. 改良西门子法生产多晶硅污染物排放调查[J].甘肃科技, 2012, 28(13): 35-37.
[61]赵文成. 有机硅生产废水处理工艺技术研究[J]. 环境科学导刊, 2020, 39(5): 73-74, 79.
[62]傅云荣. 含硅化合物作肥料的研究[J]. 湖北化工, 1993(4): 52-54.
[63]武艳菊, 刘振学. 利用粉煤灰生产农用肥[J]. 中国资源综合利用, 2004(10): 17-19.
[64]DB34/T 2847—2017,硅肥合理施用技术规程[S]. 合肥:安徽质量技术监督局,2017.
[65]马 新. 石河子垦区土壤有效硅的空间分布与硅肥肥效[D]. 石河子:石河子大学,2015.
[66]唐福军. 硅肥生产技术综述[J]. 黑龙江八一农垦大学学报,2006, 18(4): 72-75.
[67]邓小玉, 臧惠林. 我国硅肥应用研究概况[J]. 湖北农业科学, 1988, 22(1): 35-38.
[68]ZHOU Bei-bei, MA Jie, CHEN Feng-yuan. Mechanisms Underlying Silicon-dependent Metal Tolerance in the Marine Diatom Phaeodactylum Tricornutum[J]. Environmental Pollution, 2020, 262: 1-12.
[69]YANG Miao, ZHAO Wen, XIE Xi. Effects of Nitrogen, Phosphorus, Iron and Silicon on Growth of Five Species of Marine Benthic Diatoms[J]. Acta Ecologica Sinica, 2014, 34(6): 311-319.
[70]才美佳. 长江下游干流硅藻生物多样性研究[D].上海:上海师范大学, 2018.
[71]JENNERJAHNA T, ITTEKKOT V, KLOPPER S,et al. Biogeochemistry of a Tropical River Affected by Human Activities in Its Catchment: Brantas River Estuary and Coastal Waters of Madura Strait, Java, Indonesia.Estuarine[J]. Coastal and Shelf Science, 2004, 60: 503-514.
[72]ALMAZOV V. StockRastverennykh Veschestv Kotorye Vynoweatsya Rekami USSR[J]. Naukovi Zapiski Odes Biol.St., 1961, 3: 99-107.
[73]WAHBY S, BISHARA N. The Effect of the River Nile on Mediterranean Water, Before and After the Construction of the High Dam at Aswan[R]. Rome: Food and Agriculture Organization of the United Nations, 1981.
[74]唐小娅, 童思陈, 黄国鲜, 等. 三峡水库总磷时空变化特征及滞留效应分析[J]. 环境科学, 2020, 41(5): 2096-2106.
[75]余立华, 李道季, 方 涛, 等. 三峡水库蓄水前后长江口水域夏季硅酸盐、溶解无机氮分布及硅氮比值的变化[J]. 生态学报, 2006, 26(9): 2817-2826.

基金

中国长江三峡集团有限公司项目(201903145);国家自然科学基金项目(51979006,41907401);国家高层次人才特殊支持计划项目(CKSD2019542/SH)

PDF(1324 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map