为了实现长时段径流的准确模拟,基于abcd、TWBM、VWBM和DWBM四个月水量平衡模型的结构框架,设计了一组年径流模拟方法。其基本思路为:以L(L为12的约数)个月的累积实测降水量和潜在蒸散发量作为模型输入,通过模型模拟首先得到相应时长的累积模拟径流量,然后每个时长12/L顺次分段相加得到相应模拟年径流量。设计的年径流模拟方法在200个MOPEX流域上的应用结果表明:基于4个模型的年径流模拟方法在绝大多数流域上均能获得较为满意的模拟精度,其中以abcd模型效果最优;随着累积时段L的增加,基于4个模型的年径流模拟精度均呈现出下降趋势,但DWBM模型表现最为稳定。研究成果可为探讨较大尺度上的水文过程和规律提供一种新思路。
Abstract
To simulate annual streamflow accurately, a set of annual streamflow simulation methods were designed based on the structures of four monthly water balance models, namely, the abcd model, Thornthwaite's Water Balance Model (TWBM), Vandewiele's Water Balance Model (VWBM), and Dynamic Water Balance Model (DWBM). The main design ideas are described as follows: the accumulated observed precipitation and potential evapotranspiration in L-month (i.e., the divisor of 12) were taken as inputs, the accumulated runoff of the corresponding length of time was firstly simulated by using the selected monthly model, and the annual streamflow was subsequently calculated by the sum of the corresponding simulated runoff at different time intervals (i.e., 12/L), respectively. The developed methods were applied to 200 MOPEX (Model Parameter Estimation Experiment) catchments, and results manifest that the annual streamflow simulation methods based on all four models could obtain good performances for annual runoff simulations in most MOPEX catchments, and the abcd model outperformed the other three models. With the increase of L, the accuracy of annual streamflow simulation methods based on all four models decreased, and the stability of DWBM model outperformed the other three models. The research findings offer a new idea of thinking for studying hydrological processes and laws at the long hydrological time-scale.
关键词
月水量平衡模型 /
中长期径流模拟 /
时间尺度 /
时间聚合 /
MOPEX流域
Key words
monthly water balance model /
mid-long-term streamflow simulation /
hydrological time-scale /
time aggregation /
MOPEX catchments
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李 帅, 熊立华. 年径流模拟方法比较研究[J]. 水资源研究, 2013, 2(2): 114-120.
[2] 熊立华, 郭生练, 付小平, 等. 两参数月水量平衡模型的研制和应用[J]. 水科学进展, 1996, 7(增刊): 80-86.
[3] 谢萍萍, 宋松柏. 非参数解集模型在月径流随机模拟中的应用[J]. 人民黄河, 2010, 32(8): 38-40,44.
[4] 王渺林, 郭生练. 月水量平衡模型比较分析及其应用[J]. 人民长江, 2000, 31(6): 32-33.
[5] XU C Y, SINGH V P. A Review on Monthly Water Balance Models for Water Resources Investigations[J]. Water Resources Management, 1998, 12: 31-50.
[6] VANDEWIELE G L, WIN N L. Monthly Water Balance Models for 55 Basins in 10 Counties[J]. Hydrological Sciences Journal, 1998, 43: 687-699.
[7] 邓 超. 月水量平衡水文模型的参数时变特征研究[D]. 武汉:武汉大学, 2017.
[8] 李 帅, 熊立华, 万 民. 月水量平衡模型的比较研究[J]. 水文, 2011, 31(5): 35-41.
[9] THORNTHWAITE C W, MATHER J R. The Water Balance[J]. Publications in Climatology, Laboratory of Climatology, Drexel Institute of Technology, Centerton, New Jersey, 1955, 8(1): 1-104.
[10]THOMAS H A. Improved Methods for National Water Assessment, Report, Contract WR15249270[R]. Washington, D.C.: U.S. Water Resources Council, 1981.
[11]VANDEWIELE G L, XU C Y, WIN N L. Methodology and Comparative Study of Monthly Water Balance Models in Belgium, China and Burma[J]. Journal of Hydrology, 1992, 134: 315-347.
[12]XIONG L, GUO S. A Two-parameter Monthly Water Balance Model and Its Application[J]. Journal of Hydrology, 1999, 216: 111-123.
[13]胡庆芳, 王银堂, 刘克琳, 等.基于改进的两参数月水量平衡模型的月径流模拟[J]. 河海大学学报:自然科学版, 2007, 35(6): 638-642.
[14]ZHANG L, POTTER N, HICKEL K, et al. Water Balance Modeling over Variable Time Scales Based on the Budyko Framework: Model Development and Testing[J]. Journal of Hydrology, 2008, 360(1/2/3/4): 117-131.
[15]赵建华, 王国庆, 张建云, 等. RCCC-WBM水量平衡模型在北方典型流域的适用性研究[J]. 水文, 2018, 38(2): 25-29.
[16]SANKARASUBRAMANIAN A, VOGEL R M. Annual Hydroclimatology of the United States [J]. Water Resources Research, 2002, 38(6): 1083, doi: 10.1029/2001WR000619.
[17]MARTINEZ G F, GUPTA H V. Towards Improved Identification of Hydrological Models: A Diagnostic Evaluation of the “abcd” Monthly Water Balance Model for the Conterminous United States[J]. Water Resources Research, 2010, 46: W08507, doi: 10.1029/2009WR008294.
[18]WOLOCK D M, MCCABE G J. Explaining Spatial Variability in Mean Annual Runoff in the Conterminous United States[J]. Climatic Research, 1999, 11: 149-159.
[19]LI S, XIONG L, LI H Y, et al. Attributing Runoff Changes of Climate Variability and Human Activities: Uncertainty Analysis Using Four Monthly Water Balance Models[J]. Stochastic Environmental Research and Risk Assessment, 2016, 30(1): 251-269.
[20]李 帅. 考虑不确定性的变化环境下径流变化归因分析[D]. 武汉:武汉大学, 2015.
[21]林沛榕, 张艳军, 冼翠玲, 等. 不同时间尺度的中长期水文预报研究[J]. 水文, 2017, 37(6): 1-8.
[22]DUAN Q, SCHAAKE J, ANDREASSIAN V, et al. Model Parameter Estimation Experiment (MOPEX): An Overview of Science Strategy and Major Results from the Second and Third Workshops[J]. Journal of Hydrology, 2006, 320: 3-17.
[23]姜 迪. 基于MOPEX资料的水文集合预报后处理器的应用与验证[D]. 南京:南京信息工程大学, 2012.
[24]郭家力. 变化环境下水文极值事件和水量平衡响应研究[D]. 武汉:武汉大学, 2014.
[25]NASH J E, SUTCLIFFE J V. River Flow Forecasting Through Conceptual Models[J]. Journal of Hydrology, 1970, 10: 282-290.
[26]PEARSON K.Notes on the History of Correlation[J]. Biometrika, 1920, 13: 25-45.
[27]DUAN Q, GUPTA V K, SOROOSHIAN S. Effective and Efficient Global Optimization for Conceptual Rain-Runoff Models[J]. Water Resources Research, 1992, 28(4): 1015-1031.
基金
国家重点研发计划项目(2017YFC0405204);长江水科学研究联合基金项目(U2040218)