亚热带山区红壤可蚀性对土地利用变化的响应

张高玲, 谢红霞, 盛浩, 周清, 段良霞, 吴燕语

raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (2) : 63-69.

PDF(1296 KB)
PDF(1296 KB)
raybet体育在线 院报 ›› 2022, Vol. 39 ›› Issue (2) : 63-69. DOI: 10.11988/ckyyb.20201073
水土保持与生态修复

亚热带山区红壤可蚀性对土地利用变化的响应

  • 张高玲, 谢红霞, 盛浩, 周清, 段良霞, 吴燕语
作者信息 +

Erodibility of Red Soil in Subtropical Hilly Region in Response to Land Use Change

  • ZHANG Gao-ling, XIE Hong-xia, SHENG Hao, ZHOU Qing, DUAN Liang-xia, WU Yan-yu
Author information +
文章历史 +

摘要

为探究土地利用方式变化对表层土壤可蚀性的影响,分别在湖南省湘东大围山和湘西小溪国家级自然保护区选取现有4种典型土地利用方式(天然林及由其转变而来且紧邻的杉木林、果园和坡改梯耕地),分析土地利用方式发生转变后表层土壤理化性质差异,选择Torri.D模型计算土壤可蚀性K值,利用系统聚类法对本研究采样点和江西鹰潭中国科学院红壤生态试验站不同研究小区的土壤理化性质进行聚类分析,并以实测数据对本研究计算的K值进行校正。结果表明:①湘东和湘西地区天然林转变为杉木林、果园和坡改梯耕地后表层土壤砂粒含量较本地区天然林增加,土壤机械组成呈粗骨化趋势。②湘西地区各土地利用方式的表层土壤有机碳含量均高于湘东地区同类型土地利用方式,且土地利用方式由天然林发生转变后,其他土地利用类型表层土壤有机碳含量均小于本地区天然林。③湘东地区天然林及其开垦7 a后不同土地利用方式土壤可蚀性K值表现为:杉木林>天然林>果园(坡改梯)>坡改梯耕地;湘西地区天然林及其开垦10 a以上不同土地利用方式的土壤可蚀性K值表现为:坡改梯耕地>果园>杉木林>天然林。土地利用方式发生变化后,土壤可蚀性因微地形的改变以及种植作物的年限不同会发生不同程度的变化,采取水土保持措施对土壤状况有一定改善。

Abstract

The aim of this research is to explore the impact of land use changes on the erodibility of surface soils. The changes of physical and chemical properties of surface soil after land use change were examined with four typical land use patterns as case study. Such land use patterns include: natural forest, and three land use patterns converted from natural forest, namely, Chinese fir forest, orchard, and terracing farmland in Dawei Mountain of eastern Hunan Province and Xiaoxi National Nature Reserve of western Hunan Province. Moreover, the Torri.D model was employed to calculate the value of soil erodibility K, and hierachical clustering method was adopted to analyze the physical and chemical properties of the sample soil and the soils from the Red Soil Ecological Experimental Station of Chinese Academy of Science in Jiangxi Province. The measured data was used to correct the model calculation results. Results revealed that: 1) The sand content of Chinese fir forest, orchard, and terracing farmland converted from natural forest increased significantly, and the soil tended to become coarse. 2) The organic carbon content of surface soil in western Hunan was higher than that in eastern Hunan. After the conversion of land use pattern, the organic carbon content of soils in Chinese fir forest, orchard and terracing farmland were smaller than that of natural forest in the same area. 3) In east Hunan Province, the value of soil erodibility K of Chinese fir forest reclaimed for seven years was the largest among the four typical land use patterns, followed by that of natural forest, orchard (terraces) for seven years, and terracing farmland for seven years; in west Hunan Province, value of soil erodibility K of terracing farmland reclaimed for ten years was the largest, followed by that of orchard for ten years, Chinese fir forest for ten years, and natural forest. After the conversion of natural forest, soil erodibility varies according to the change of microtopography and the years of crop cultivation. Soil and water conservation measures are of help to improving the soil condition.

关键词

土地利用变化 / 亚热带山区 / 红壤 / 土壤可蚀性 / 土壤理化性质

Key words

land use change / subtropical hilly region / red soil / soil erodibility / physicochemical properties of soil

引用本文

导出引用
张高玲, 谢红霞, 盛浩, 周清, 段良霞, 吴燕语. 亚热带山区红壤可蚀性对土地利用变化的响应[J]. raybet体育在线 院报. 2022, 39(2): 63-69 https://doi.org/10.11988/ckyyb.20201073
ZHANG Gao-ling, XIE Hong-xia, SHENG Hao, ZHOU Qing, DUAN Liang-xia, WU Yan-yu. Erodibility of Red Soil in Subtropical Hilly Region in Response to Land Use Change[J]. Journal of Changjiang River Scientific Research Institute. 2022, 39(2): 63-69 https://doi.org/10.11988/ckyyb.20201073
中图分类号: S157.1   

参考文献

[1] WANG Bin, ZHANG Guang-hui, SHI Yang-yang,et al. Soil Detachment by Overland Flow under Different Vegetation Restoration Models in the Loess Plateau of China[J]. Catena, 2014,116: 51-59.
[2] SUN Di,YANG Hong, GUAN De-xin, et al. The Effects of Land Use Change on Soil Infiltration Capacity in China: A Meta-analysis[J]. Science of the Total Environment 2018 , 626: 1394-1401.
[3] 陈佑启,杨 鹏.国际上土地利用/土地覆盖变化研究的新进展[J].经济地理,2001,21(1):95-100.
[4] 刘宝元,谢 云,张科利.土壤侵蚀预报模型[M].北京:中国科学技术出版社,2001.
[5] WANG Bin, ZHENG Fen-li, ROMKENS M J M, et al. Soil Erodibility for Water Erosion: A Perspective and Chinese Experiences[J]. Geomorphology, 2013, 187: 1-10.
[6] ZHU Guan-yu, TANG Zhuang-sheng, SHANGGUAN Zhou-ping, et al. Factors Affecting the Spatial and Temporal Variations in Soil Erodibility of China[J]. Journal of Geophysical Research: Earth Surface, 2019, 124(3): 737-749.
[7] 张向炎,于东升,史学正,等.中国亚热带地区土壤可蚀性的季节性变化研究[J].水土保持学报,2009,23(1):41-44.
[8] NIMISHA T, SINGH R S. Influence of Different Land Uses on Soil Nitrogen Transformations after Conversion from an Indian Dry Tropical Forest[J]. Catena, 2009, 77: 216-223.
[9] 李新宇,唐海萍,赵云龙,等.怀来盆地不同土地利用方式对土壤质量的影响分析[J].水土保持学报,2004,18(6):103-107.
[10]刘晓利,何园球,李成亮,等.不同利用方式和肥力红壤中水稳性团聚体分布及物理性质特征[J].土壤学报,2008,45(3):459-465.
[11]朱冰冰,李占斌,李 鹏,等.土地退化/恢复中土壤可蚀性动态变化[J].农业工程学报,2009,25(2):56-61.
[12]吴昌广,曾 毅,周志翔,等.三峡库区土壤可蚀性K值研究[J].中国水土保持科学,2010,8(3):8-12.
[13]张科利,蔡永明,刘宝元,等.黄土高原地区土壤可蚀性及其应用研究[J].生态学报,2001,21(10):1687-1695.
[14]王秋霞,张 勇,丁树文,等.花岗岩崩岗区土壤可蚀性因子估算及其空间变化特征[J].中国水土保持科学,2016,14(4):1-8.
[15]谢红霞,陈 琼,李锦龙,等.长沙市东郊不同母质发育耕型红壤的可蚀性因子K值估算[J].水土保持通报,2012,32(3):133-135,159.
[16]张文太,于东升,史学正,等.中国亚热带土壤可蚀性K值预测的不确定性研究[J].土壤学报,2009,46(2):185-191.
[17]杨 欣,郭乾坤,王爱娟,等.基于小区实测数据的不同类型土壤可蚀性因子计算[J].水土保持通报,2019,39(4):114-119.
[18]张科利,彭文英,杨红丽.中国土壤可蚀性值及其估算[J].土壤学报,2007, 44(1):7-13.
[19]鲍 文,赖奕卡.湘中红壤丘陵区不同土地利用类型对土壤特性的影响[J].中国水土保持,2011(10):47-50,66.
[20]罗兰花,王翠红,谢红霞,等.大围山花岗岩风化物发育土壤抗蚀性垂直分异[J].水土保持研究,2018,25(1):62-65,71.
[21]周 璟,张旭东,何 丹,等.小流域土壤可蚀性的空间变异及其在不同土地类型下的比较[J].土壤通报,2011,42(3):715-720.
[22]杨玉盛,谢锦升,盛 浩,等.中亚热带山区土地利用变化对土壤有机碳储量和质量的影响[J].地理学报,2007,62(11):1123-1131.
[23]盛 浩,周 萍,李 洁,等.中亚热带山区深层土壤有机碳库对土地利用变化的响应[J].生态学报,2014,34(23):7004-7012.
[24]盛 浩,宋迪思,周 萍,等.土地利用变化对花岗岩红壤底土溶解性有机质数量和光谱特征的影响[J].生态学报,2017,37(14):4676-4685.
[25]鲁如坤.土壤农业化学分析方法[M].北京: 中国农业科技出版社,2000.
[26]TORRI D, POESSEN J, BORSELLI L. Predictability and Uncertainty of the Soil Erodibility Factor Using a Global Dataset[J]. Catena, 1997, 31: 1-22.
[27]TORRI D, POESSEN J, BORSELLI L. Corrigendum to“Predictability and Uncertainty of the Soil Erodibility Factor Using a Global Data Set”[ Catena 31 (1997): 1-22] and to“Erratum to Predictability and Uncertainty of the Soil Erodibility Factor Using a Global Data Set”[Catena 32(1998):307-308][J]. Catena,2002,46(4):309-310.
[28]姚文俊,张 岩,朱清科.小流域林地空间分布对土壤侵蚀的影响:以陕北吴起县为例[J].中国水土保持科学,2015,13(1):16-22.
[29]史学正,于东升,吕喜玺.用人工模拟降雨仪研究我国亚热带土壤的可蚀性[J].水土保持学报,1995,9(3):38-42.
[30]李 鹏,李占斌,郑 郁.不同土地利用方式对干热河谷地区土壤可蚀性的影响[J].水土保持研究,2011,18(4):16-19.
[31]刘宝元,张科利,焦菊英.土壤可蚀性及其在侵蚀预报中的应用[J].自然资源学报,1999,14(4):345-350.
[32]殷庆元,王章文,谭 琼,等.金沙江干热河谷坡改梯及生物地埂对土壤可蚀性的影响[J].水土保持学报,2015,29(1):41-47.
[33]王凯博,时伟宇,上官周平.黄土丘陵区天然和人工植被类型对土壤理化性质的影响[J].农业工程学报,2012,28(15):80-86.
[34]孟庆权,葛露露,林 宇,等.杉木人工林土壤碳、氮、磷化学计量特征[J].江西农业大学学报,2018,40(6):1155-1162.
[35]李 平,郑阿宝,阮宏华,等.苏南丘陵不同林龄杉木林土壤活性有机碳变化特征[J].生态学杂志,2011,30(4):778-783.
[36]张 静,黄兴科,罗雅曦,等.宁夏风沙区苹果园地土壤质量及硒元素评价[J].水土保持通报,2019,39(6):66-76.
[37]张金池,陈三雄,刘道平,等.浙江安吉主要植被类型土壤抗蚀性指标筛选及评价模型构建[J].亚热带水土保持,2006,18(2):1-5.
[38]杨 帆,张洪江,程金花,等.北京市延庆县不同土地利用方式下的土壤可蚀性研究[J].水土保持通报,2013,33(6):19-23.
[39]孙一惠,马 岚,张 栋,等.2种扦插护岸植物根系对土壤结构的改良效应[J].北京林业大学学报,2017,39(7):54-61.
[40]王文鑫,王文龙,郭明明,等.黄土高塬沟壑区植被恢复对沟头土壤团聚体特征及土壤可蚀性的影响[J].中国农业科学,2019,52(16):2845-2857.
[41]林 芳,朱兆龙,曾全超,等.延河流域三种土壤可蚀性K值估算方法比较[J].土壤学报,2017,54(5):1136-1146.
[42]湖南省农业厅.湖南土壤[M].北京:中国农业出版社,1989.

基金

湖南省教育厅重点项目(19A242);国家科技基础性工作专项(2014FY110200);湖南省水利厅科技项目(湘水科计[2017]230-34)

PDF(1296 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map