花岗岩残积土在我国华南地区广泛分布,由于其具有明显的遇水崩解特性,往往带来山体滑坡等地质灾害。基于微生物诱导碳酸钙沉淀技术(MICP)采用巴氏芽孢杆菌对水泥加固花岗岩残积土的工程性质、工程技术进行改良研究,探究以水泥掺入量、钙离子浓度和钙源等因素为变量时,MICP技术对水泥土强度、应力应变关系等力学性能的影响。通过无侧限抗压强度(UCS)试验,分析了经MICP加固后水泥土的力学强度,得到以下结论:①MICP技术可以明显增强花岗岩残积土为基材的水泥土的强度、刚度和韧性等工程性质;②与对照组相比,试验组强度最大增长率为87.5%,最经济的水泥掺入量为15%;③氯化钙和乙酸钙为钙源都可以改善试样的韧性,而乙酸钙的效果更好,与对照组相比,试验组应变最大增长率为69.67%,此时所对应的钙离子浓度为0.5 mol/L。
Abstract
Widely distributed in south China, granite residual soil often brings about landslide and other geological disasters as it disintegrates obviously when confronted with water. In this research, the engineering properties and engineering techniques of cemented granite residual soil were improved by adding bacillus pasteurii using microbial induced calcite precipitation (MICP) technology. The influence of MICP technology on the mechanical properties of cemented-soil such as strength and stress-strain relationship was examined when factors such as cement mixing ratio, calcium ion concentration and calcium source were taken as variables. Unconfined compressive strength (UCS) test was conducted to analyze the mechanical strength of cemented-soil strengthened by MICP, and conclusions were obtained as follows: 1) MICP technology significantly enhanced the engineering properties inclusive of strength, stiffness and toughness of cemented granite residual soil; 2) compared with the control group, the maximum growth rate of strength in the test group amounted to 87.5%, and the most economical cement mixing ratio was 15%; 3) calcium chloride and calcium acetate could both improve the toughness of test specimens, and the effect of calcium acetate was superior; compared with the control group, the maximum growth rate of the toughness of the test group reached 69.67% when the calcium ion concentration was 0.5 mol/L.
关键词
水泥土 /
巴氏芽孢杆菌 /
微生物诱导碳酸钙沉淀技术(MICP) /
力学特性 /
无侧限抗压强度
Key words
cement-soil /
bacillus pasteurii /
microbial induced calcite precipitation (MICP) /
mechanical properties /
unconfined compressive strength
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 陈子敬.汕头市花岗岩残积土的工程特性及路堑边坡稳定分析[J].华南地质与矿产,2007,26(2):245-249,253.
[2] 孙成伟.花岗岩残积土工程特性及地铁深基坑设计技术研究[D].武汉:中国地质大学,2014.
[3] LIN Peng, CHEN Hui-mei, WANG Yan-qun. Behavior of the Unsaturated Granite Residual Soil and Its Effects on Earth Dam Project[C]//Proceedings of GeoHunan International Conference 2011. Hunan, China. June 9-11, 2011, doi: 10.1061/47628(407)9.
[4] 张 抒.广州地区花岗岩残积土崩解特性研究[D]. 武汉:中国地质大学, 2009:47-51.
[5] 梁仕华,周世宗,张 朗,等.广州东部地区花岗岩残积土物理力学指标统计分析[J].广东工业大学学报,2015(1):29-33.
[6] 于佳静,陈东霞,王 晖,等.干湿循环下花岗岩残积土抗剪强度及边坡稳定性分析[J].厦门大学学报(自然科学版),2019,58(4):614-620.
[7] 李建新. 南岳地区花岗岩残积土微观特性及崩解机理研究[D]. 湘潭:湖南科技大学, 2014.
[8] 胡其志,洪昌伟,刘 恒,许兆栋.黏粒含量对花岗岩残积土渗透与强度特性的影响[J].raybet体育在线
院报,2020,37(9):64-69.
[9] 赵磊军. 改良花岗岩残积土强度特性及崩解特性的研究[D]. 长沙:湖南科技大学,2015.
[10]刘 胜,陈志波,陈伟文,等. 粉煤灰改良花岗岩残积土试验研究[J]. 福州大学学报(自然科学版),2018,46(5):115-120.
[11]李小冬,吴 星,张智慧.基于LCA理论的环境影响社会支付意愿研究[J].哈尔滨工业大学学报,2005,37(11):1507-1510.
[12]刘顺妮.水泥-混凝土体系环境影响评价及其应用研究[D].武汉:武汉理工大学,2003.
[13]CHU J, STABNIKOV V, IVANOV V. Microbially Induced Calcium Carbonate Precipitation on Surface or in the Bulk of Soil[J]. Geomicrobiology Journal, 2012, 29(6): 544-549.
[14]IVANOV V, CHU J. Applications of Microorganisms to Geotechnical Engineering for Bioclogging and Biocementation of Soil In Situ[J]. Reviews in Environmental Science & Biotechnology, 2008, 7(2): 139-153.
[15]ADOLPHE J P, LOUBIERE J F, PARADAS J, et al. Procédé de Traitement Biologique d'une Surface Artificielle: EP,EP 0388304 A1[P]. 1990.
[16]WHIFFIN V S. Microbial CaCO3 Precipitation for the Production of Biocement[D]. Murdoch, Australia: Murdoch University, 2004: 31-33.
[17]VAN PAASSEN L A, GHOSE R, VAN DER LINDEN T J M, et al. Quantifying Bio-mediated Ground Improvement by Ureolysis: A Large Scale Biogrout Experiment[J].Journal of Geotechnical & Geoenvironmental Engineering, 2010, 136(12): 1721-1728.
[18]CHOI S G, WANG K, CHU J. Properties of Biocemented Fiber Reinforced Sand[J]. Construction and Building Materials, 2016, 120: 623-629.
[19]余 梦,张家铭,周 杨,等.MICP技术改性膨胀土试验研究[J].raybet体育在线
院报,2021,38(5):103-108,122.
[20]LI M,LI L,OGBONNAYA U,et al. Influence of Fiber Addition on Mechanical Properties of MICP-Treated Sand[J].Journal of Materials in Civil Engineering, 2016, 28(4): 04015166.
[21]陈溪海.微生物矿化固定重金属和改善土体力学性质的试验研究[D].北京:清华大学,2016.
[22]DEJONG J T, SOGA K, BANWART S A, et al. Soil Engineering in Vivo: Harnessing Natural Biogeochemical Systems for Sustainable, Multi-functional Engineering Solutions[J]. Journal of the Royal Society Interface, 2011, 8(54): 1-15.
[23]WHIFFIN V S, PAASSEN L A V, HARKES M P. Microbial Carbonate Precipitation as a Soil Improvement Technique[J]. Geomicrobiology Journal, 2007, 24(5): 417-423.
[24]方祥位,申春妮,楚 剑,等.微生物沉积碳酸钙固化珊瑚砂的试验研究[J].岩土力学,2015,36(10):2773-2779.
[25]CHENG L, CORD-RUWISCH R, SHAHIN M A. Cementation of Sand Soil by Microbially Induced Calcite Precipitation at Various Degrees of Saturation[J]. Canadian Geotechnical Journal, 2013, 50(1): 81-90.[26]黄 明,张瑾璇,靳贵晓,等.残积土MICP灌浆结石体冻融损伤的核磁共振特性试验研究[J].岩石力学与工程学报,2018,37(12):210-219.
[27]黄小满.水泥搅拌桩水泥土强度特性试验研究[J].西部交通科技,2014(5):20-23.
[28]王贤昆,庞建勇,王 强.复合水泥土无侧限抗压强度正交试验研究[J].raybet体育在线
院报,2015,32(12):72-75.
[29]嵇晓雷,朱逢斌.水泥土无侧限抗压强度室内试验研究[J].四川建筑科学研究,2011,37(5):146-148.
[30]高松鹤.不同水泥土力学性能试验研究[J].施工技术,2014,43(增刊2):84-89.
[31]肖桃李,何云龙,李启凤,等. 水泥土无侧限抗压强度试验研究[J].长江大学学报(自科版),2017,14(5):64-66.
基金
国家自然科学基金项目(51878657);广东省科技计划项目(STKJ2021129);汕头大学科研启动项目(NTF19010)