为更深入了解层状岩体的力学特性,首先基于细观损伤力学理论,运用体积平均化的方法,推导了微裂纹对岩体弹性柔度矩阵的贡献;然后基于不可逆热力学框架,导出了损伤矢量的损伤破坏方程;最后建立了层状岩体的损伤破坏本构模型,并通过数值计算模拟了层状岩体的损伤破坏特征,与室内试验结果吻合较好。巴西圆盘劈裂数值试验研究表明:岩体试样的破裂面均从加载点起裂;层理倾角0°、90°时,破裂面为通过加载中心和试样中心的近似平面,层理倾角为其他角度时,破裂面为偏离了加载中心的曲面。与室内试验结果对比可知,本文二次开发的本构模型能够较好地预测层状岩体渐进破坏的各向异性。
Abstract
To further understand the mechanical properties of layered rock mass, the contribution of microcracks to the elastic flexibility matrix of rock mass was deduced by using the volume averaging method based on the theory of microscopic damage mechanics; subsequently, the damage evolution equation with damage vector was derived based on the irreversible thermodynamic framework; finally, the damage evolution constitutive model of layered rock mass was established, and the applicability of the constitutive model was verified by comparing the results of numerical calculation with laboratory test. The results of Brazilian disc splitting test manifest that the fracture surface of rock mass samples starts from the loading point. When the bedding dip angle is 0° and 90°, the fracture surface is the approximate plane passing through the loading center and the sample center; otherwise the fracture surface is the curved surface deviating from the loading center. Comparison with laboratory test results verified that the constitutive model developed in this paper could well predict the anisotropic characteristics of progressive failure of layered rock mass.
关键词
微裂纹 /
损伤破坏 /
本构模型 /
层状岩体 /
巴西圆盘劈裂试验
Key words
microcrack /
damage evolution /
constitutive model /
layered rock mass /
Brazilian disc splitting test
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄书岭,丁秀丽,邬爱清,等. 层状岩体多节理本构模型与试验验证[J]. 岩石力学与工程学报,2012, 31(8): 1627-1635.
[2] 黄书岭,徐劲松,丁秀丽,等. 考虑结构面特性的层状岩体复合材料模型与应用研究[J]. 岩石力学与工程学报,2010, 29(4): 743-756.
[3] 倪绍虎,肖 明. 层状岩体的破坏特征及其迭代计算方法[J]. 水利学报,2009, 40(7): 798-804.
[4] 梅松华. 层状岩体开挖变形机制及破坏机理研究[D]. 武汉:中国科学院研究生院(武汉岩土力学研究所),2008.
[5] 余寿文. 损伤力学[M]. 北京: 清华大学出版社, 1997.
[6] KACHANOVL M. Effective Elastic Properties of Cracked Solids: Critical Review of Some Basic Concepts[J]. Applied Mechanics Reviews, 1992, 45(8): 305-336.
[7] RABOTNOV Y N.On the Equations of State for Creep[J]. Progress in Applied Mechanics, 1963: 307-315, doi: 10.1243/PIME_CONF_1963_178_030_02.
[8] GURSON A L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth, I. Yield Criteria and Flow Rules for Porous Ductile Media[J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.
[9] KACHANOV L M. Introduction to Continuum Damage Mechanics[M].Cambrige:Cambrige University Press,1990.
[10]KRAJCINOVIC D,FONSEKA G U.The Continuous Damage Theory of Brittle Materials.Part 1:General Theory[J]. Journal of Applied Mechanics,1981, 48(4): 809-815.
[11]FONSEKA G U, KRAJCINOVIC D. The Continuous Damage Theory of Brittle Materials. Part 2: Uniaxial and Plane Response Models[J]. Journal of Applied Mechanics, 1981, 48(4): 816-824.
[12]谢和平. 岩石、混凝土损伤力学[M]. 徐州: 中国矿业大学出版社, 1990.
[13]KACHANOV M. On the Effective Elastic Properties of Cracked Solids: Editor's Comments[J]. International Journal of Fracture, 2007, 146(4): 295-299.
[14]KACHANOV M, SEVOSTIANOV I. On Quantitative Characterization of Microstructures and Effective Properties[J]. International Journal of Solids and Structures, 2005(42): 309-336.
[15]KACHANOV M,PRIOUL R,JOCKER J. Incremental Linear Elastic Response of Rocks Containing Multiple Rough Fractures: Similarities and Differences with Traction- Freecracks[J].Geophysics, 2010,1(75):D1-D11.
[16]刘运思,傅鹤林,饶军应,等. 不同层理方位影响下板岩各向异性巴西圆盘劈裂试验研究[J]. 岩石力学与工程学报,2012, 31(4): 785-791.
[17]邓华锋,张小景,张恒宾,等. 巴西劈裂法在层状岩体
抗拉强度测试中的分析与讨论[J]. 岩土力学,2016, 37(增刊2): 309-315.
[18]徐国文. 层状千枚岩地层隧道稳定性分析[D]. 成都:西南交通大学, 2017.
[19]黄 春,左双英,等. 层状各向异性岩体的室内单轴压缩试验分析[J]. raybet体育在线
院报,2016,33(5):58-62.