高外水作用下,深埋软岩隧洞围岩-支护结构安全将受到极大挑战。为了降低高外水压对软岩隧洞围岩-支护体系的影响,较常见的工程处理措施为在隧洞周围布置排水结构,以降低洞周外水压力。笔者首先提出了一种简便的隧洞围岩-衬砌结构渗流-应力分析思路。然后,以某过断层带深埋软岩隧洞为研究对象,通过开展隧洞施工期、运行期渗流-应力耦合分析,研究了软岩隧洞排水结构的排水效应。研究发现,在注浆圈和排水结构的综合作用下,隧洞衬砌附近的水力比降较小,注浆圈水力比降较大,使注浆圈承担绝大部分外水荷载,而衬砌承担少部分外水荷载;在软岩和衬砌的变形协调作用下,最终形成注浆圈与衬砌的协同承载效应,有效提高了隧洞的运行安全水平。
Abstract
The safety of surrounding rock and support structures of deep-buried soft rock tunnel is faced with great challenges under the action of high external water pressure. Drainage structure is a common engineering treatment to alleviate the impact of external water pressure on the surrounding rock and support structure of soft rock tunnel. A simple seepage-stress coupling scheme for tunnel’s surrounding rock-lining structure is first established. The drainage effect of the drainage structures of a deep-buried soft rock tunnel crossing a fault zone is investigated through seepage-stress coupling analysis in construction period and operation period. Under the combined action of grouting ring and drainage structures, the hydraulic gradient near tunnel lining is small while the hydraulic gradient of grouting ring is large. As a result, the grouting ring bears most of the external water load, while the tunnel lining bears a small part of the external water load. In addition, under the deformation compatibility between soft rock and lining, the co-bearing effect between grouting ring and lining is finally formed, which effectively improves the safety of the tunnel in operation period.
关键词
输水隧洞 /
软岩 /
高外水压 /
排水结构 /
渗流-应力耦合分析
Key words
water conveyance tunnel /
soft rock /
high external water pressure /
drainage structure /
seepage-stress coupling analysis
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王志强, 李广诚. 中国长距离调水工程地质问题综述[J]. 工程地质学报, 2020, 28(2):412-420.
[2] 张小宝, 司富安, 段世委, 等. 深埋水工长隧洞主要工程地质问题与勘察经验[J]. 水利规划与设计, 2021(12):55-60.
[3] 赵 妍, 刘致彬, 孙粤琳, 等. 承受高内、外水压力的隧洞结构设计建议[J]. 水力发电, 2019, 45(3):54-57.
[4] 孙 博, 谷 玲, 谢金元, 等. 高外水压力下水工隧洞设计理念的初步探讨[J]. 地下空间与工程学报, 2017, 13(2):752-756.
[5] 李雪春, 陈重华, 陈 平, 等. 山西引黄工程南干线7#隧洞衬砌外水压力研究[J]. 中国水利水电科学研究院学报, 2003, 1(3):200-206.
[6] 吴剑疆. 深埋隧洞高外水压力设计探讨[J]. 水利规划与设计, 2019(10):78-84.
[7] 谢小帅, 陈华松, 肖欣宏, 等. 深埋引水隧洞不同排水方案渗流场及衬砌外水压力研究[J]. 湖南大学学报(自然科学版), 2018, 45(增刊):64-68.
[8] 赵大洲, 梁春雨, 党雪梅, 等. 引汉济渭工程黄三段深埋长输水隧洞排水方案研究[J]. 水利水电技术, 2017, 48(8):120-125.
[9] 于茂, 王浏刘, 辛凤茂. 高外水隧洞衬砌堵排水方案及降压效果分析[J]. 水利规划与设计, 2019(7):145-148.
[10]彭亚敏, 沈振中, 甘 磊. 深埋水工隧洞衬砌渗透压力控制措施研究[J]. 水利水运工程学报, 2018,1(1):89-94.
[11]鲁思远, 陈 勇, 管志保. 特大断面无压泄洪隧洞外水压力取值的探讨[J]. 水利水电快报, 2019, 40(6):38-42.
[12]刘立鹏, 汪小刚, 段庆伟. 高压富水地层水工隧洞衬砌外水压力确定与应对措施[J]. 岩土工程学报, 2022, 44(8):1549-1557.
[13]杜雷功. 高外水压力下深埋隧洞衬砌与围岩联合承载设计研究[J]. 水利水电技术, 2019, 50(8):106-109.
[14]张 肃, 丁秀丽, 黄书岭. 基于均匀设计-响应面-有限元法的软岩隧洞围岩与衬砌结构协同承载可靠性分析[J]. raybet体育在线
院报,2021, 38(6): 79-85.
[15]王旺盛, 陈长生, 王家祥, 等. 滇中引水工程香炉山深埋长隧洞主要工程地质问题[J]. raybet体育在线
院报,2020, 37(9): 154-159.
[16]胡 静, 陈胜宏. 渗流分析中排水孔模拟的空气单元法[J]. 岩土力学,2003, 24(2): 281-283,287.
基金
国家自然科学基金项目(51979008);云南省重大科技专项计划项目(202102AF080001-2);raybet体育在线
创新团队项目(CKSF2021715/YT);中央级公益性科研院所基本科研业务费项目(CKSF2021458/YT)