为确保断层破碎带内隧洞的安全施工和掌子面岩体稳定,提出了一种管棚支护参数的设计方法。首先,对管棚分段且取其中一部分作为有效计算长度,采用太沙基理论计算松散破碎岩体对管棚的荷载,根据约束条件将洞内管棚简化为两端固支梁,得到管棚弯矩、挠度和端部反力。然后,根据岩体和管棚的各类破坏条件,推导了管棚支护参数的计算公式。最后,介绍该方法在某断层破碎带隧洞的应用情况。该隧洞前期超前支护仅采用小导管,已发生数次掌子面坍塌。基于此方法分析小导管支护偏弱并进行了管棚支护设计,在之后开挖过程中收敛变形减小,管棚支护取得了较好的加固效果。研究成果可为断层破碎带隧洞管棚支护参数设计提供参考。
Abstract
A method of designing the support parameters of pipe roof is proposed to ensure the safe construction of tunnel in fault fracture zone and the stability of surrounding rock of working face. First, the pipe roof is divided into several segments of which one part is taken as effective calculation length. The load of loose fractured rock mass on the pipe roof is calculated based on Terzaghi's theory. The bending moment, deflection, and end-reaction are obtained by simplifying the pipe roof into a beam with both ends fixed and supported. Furthermore, the calculation formulae for the support parameters of pipe roof are derived according to the failure conditions of rock mass and pipe roof. The method is applied to a tunnel in fault zone which has undergone several collapses of working face due to only small duct bracing. The results of the proposed method indicate that small duct bracing is inadequate, while pipe roof support could generate smaller convergence deformation during excavation. The research findings offer reference for the design of support parameters of pipe roof in tunnels constructed in fault zones.
关键词
隧洞 /
断层破碎带 /
管棚 /
参数设计 /
掌子面稳定
Key words
tunnel /
fault fracture zone /
pipe roof /
parameter design /
tunnel face stability
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘雪霞,陈雪艳,魏 珂,等. 超前管棚支护在输水隧洞复杂地层中的应用[J].人民黄河,2019,41(8):134-13,143.
[2] 李建军,谢应爽. 隧道超前支护管棚工法设计与计算研究[J].公路交通技术,2007(3):140-14,149.
[3] 贾宏宇. 超前管棚支护在隧道工程中的应用[J].铁道建筑技术,2010(3):96-9,122.
[4] 贾金青,王海涛,涂兵雄,等. 管棚力学行为的解析分析与现场测试[J].岩土力学,2010,31(6):1858-1864.
[5] 王海涛,贾金青,郁 胜. 隧道管棚预支护的力学行为及参数优化[J].中国公路学报,2010,23(4):78-83.
[6] 丁祖德,付 江,刘新峰,等. 考虑空间效应的岩堆体隧道管棚力学模型研究[J].铁道学报,2018,40(7):121-127.
[7] 宋战平,田小旭,周冠南,等. 隧道洞内管棚超前预支护力学行为的理论分析[J].中国公路学报,2020,33(4):89-98.
[8] 韩吉珅,侯哲生,顾 洋. 深埋隧道软弱围岩管棚处理效果研究[J].水利与建筑工程学报,2017,15(2):86-91.
[9] 董 捷,李成献,杨 博. 大断面浅埋隧道管棚支护参数优化研究[J].河北建筑工程学院学报,2021,39(1):27-31.
[10]唐世禄,何江雪,林鑫隆. 基于FLAC3D软弱围岩隧道管棚预加固措施研究[J].路基工程,2021(5):226-230.
[11]夏治涛. 水隧洞进口管棚超前支护参数优化研究[J].黑龙江水利科技,2021,49(5):117-119.
[12]沈明荣. 岩体力学[M].上海:同济大学出版社,1993.
[13]杨建民,喻 渝,谭忠盛,等. 大断面深浅埋黄土隧道围岩压力试验研究[J].铁道工程学报,2009(2):76-79.
[14]魏旭博,石豫川,顾新杰,等. 冰水堆积物隧道松动土压力计算方法修正及应用[J].raybet体育在线
院报,2018,35(5):110-114.
[15]李鹏飞,周 烨,伍 冬. 隧道围岩压力计算方法及其适用范围[J].中国铁道科学,2013,34(6):55-60.
[16]GB 50936—2014, 钢管混凝土结构技术规范[S]. 北京:中国建筑工业出版社,2014.
[17]王乾坤. 滑桩的桩间土拱和临界间距的探讨[J].武汉理工大学学报,2005(8):64-67.
[18]孙玉永,周顺华,肖红菊,等. 管棚法应用于软土地层的稳定性分析[J].岩石力学与工程学报,2013,32(增刊2):4199-4206.
[19]杨 曌,胡五洲,陈可祥,等. 隧道塌方处理中管棚支护的力学模型与计算分析[J].土木工程与管理学报,2012,29(4):65-69,74.
基金
云南省重大科技专项计划项目(202102AF080001-4);中央级公益性科研院所基本科研业务费项目(CKSF2021715/YT)