在建的滇中引水工程香炉山隧洞5#支洞穿越活动断裂带,地质条件极为复杂,施工过程中发生过严重的涌水突泥灾害,围岩稳定问题极为突出,严重制约施工进度和工程安全。为深入系统地研究5#支洞应急抢险洞段合理的围岩力学参数及隧洞稳定性情况,充分利用现场监测及物探资料,采用基于神经网络和遗传算法的位移反演方法确定了应急抢险洞段围岩的力学参数;并在此基础上,模拟施工开挖支护全过程,进行了围岩稳定性分析。结果表明:在当前开挖支护条件下,5#支洞应急抢险洞段整体处于稳定状态,除桩号K0+501—513洞段右边墙围岩变形量较大外,其余部位围岩变形量整体<15 cm;塑性区深度在2~5 m范围内;支护结构受力整体处于正常水平。相关研究结果对于5#支洞后续洞段或相近条件隧洞安全快速施工具有指导意义。
Abstract
The 5# adit of Xianglushan tunnel under construction of Central Yunnan Water Diversion Project features complex geological conditions as it crosses active fault zones. Severe water-mud bursting disasters and prominent stability problems of surrounding rock hinder the construction progress and project safety. According to field monitoring and geophysical exploration data, we determined the mechanical parameters of surrounding rock at emergency rescue section by using inversion analysis based on neural network and genetic algorithm; on this basis, we simulated the whole process of construction, excavation, and support, and analysed the surrounding rock stability. Results manifested that the surrounding rock mass of emergency rescue tunnel section of adit 5# was in an overall stable state. Except that the deformation of surrounding rock on the right side of the tunnel section K0+501-513 was relatively large, the deformation of other parts was less than 15 cm in general; the depth of plastic zones was within the range of 2-5 m; and the stress of support structures was at a normal level. The research findings would guide the safe and rapid construction of subsequent tunnel sections of 5# adit or tunnels with similar geological conditions.
关键词
围岩参数反演 /
神经网络 /
遗传算法 /
稳定性分析 /
香炉山隧洞
Key words
inversion of rock mass parameters /
neural network /
genetic algorithm /
stability analysis /
Xianglushan Tunnel
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 赵 毅. 在建国家重点水利标志性工程之首:滇中引水工程[J]. 隧道建设(中英文), 2019(3):12.
[2] 王旺盛, 陈长生, 王家祥, 等. 滇中引水工程香炉山深埋长隧洞主要工程地质问题[J]. raybet体育在线
院报, 2020, 37(9): 154-159.
[3] 钮新强, 张传健. 复杂地质条件下跨流域调水超长深埋隧洞建设需研究的关键技术问题[J]. 隧道建设(中英文), 2019, 39(4): 523-532.
[4] 王旺盛,王家祥,李银泉.滇中引水工程深埋长隧洞勘察关键技术与应用[C]//水利勘测技术成就与展望:中国水利学会勘测专业委员会 2018 年年会暨学术交流会论文集. 武汉: 武汉理工大学出版社, 2018: 30-39.
[5] 司富安,贾国臣,高玉生.深埋长隧洞主要工程地质问题与勘察[G]//大坝安全与新技术应用. 北京: 中国水利水电出版社, 2013:129-137.
[6] 张新辉, 付 平, 尹健民,等. 滇中引水工程香炉山隧洞地应力特征及其活动构造响应[J]. 岩土工程学报, 2021, 43(1):130-139.
[7] 张 咪, 曾阳益, 邓通海,等. 深埋软岩隧道开挖及支护变形特征研究[J]. 水电能源科学, 2017, 35(1):123-127.
[8] 杨志法, 尚彦军, 刘 英. 关于岩土工程类比法的研究[J].工程地质学报, 1997(4):12-18.
[9] HOEK E, BROWN E T. The Hoek-Brown Failure Criterion and GSI: 2018 Edition[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(3):19.
[10]HAN G, ZHOU H, HOU J, et al. A Comprehensive Investigation on the Shear Properties of Interlayer Shear Weakness Zones[J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 8765-8787.
[11]孙 钧, 黄 伟. 岩石力学参数弹塑性反演问题的优化方法[J]. 岩石力学与工程学报, 1992, 11(3):221-229, 317.
[12]金长宇, 马震岳, 张运良, 等. 神经网络在岩体力学参数和地应力场反演中的应用[J]. 岩土力学, 2006, 27(8):1263-1266,1271.
[13]田明俊,周 晶.岩土工程参数反演的一种新方法[J].岩石力学与工程学报,2005, 24(9):1492-1496.
[14]陈炳瑞,冯夏庭,丁秀丽,等. 基于模式-遗传-神经网络的流变参数反演[J].岩石力学与工程学报, 2005, 24(4):553-558.
[15]江 权,冯夏庭,苏国韶,等. 基于松动圈-位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J]. 岩石力学与工程学报, 2007,26(增刊1):2654-2662.
[16]王家祥, 周 云, 李银泉,等. 滇中引水工程香炉山深埋长隧洞高地应力与硬岩岩爆分析研究[J]. 水利规划与设计, 2019(12):135-139.
[17]GB 50218—2014, 工程岩体分级标准[S]. 北京: 中国计划出版社, 2014.
基金
云南省重大科技专项计划项目(202102AF080001-2)