隧洞软岩大变形严重威胁到 TBM 安全运行,软弱围岩的变形具有明显的蠕变特性。针对某深埋输水隧洞软岩TBM掘进洞段的围岩变形和支护结构安全展开分析和评价,研究高应力条件下软岩的蠕变特性,比较不同支护方式管片结构的受力状态。研究表明:软岩洞段TBM掘进采取大断面扩挖和管片+豆砾石层+聚乙烯泡沫板缓冲层支护,缓冲层的施加明显改善管片的受力状态,有效地提高了管片结构的安全裕度。建议在类似的深埋软岩隧洞工程中,开展有针对性的岩体流变试验和变形监测,选取合适扩挖断面尺寸和支护方式,给围岩变形预留足够空间,为TBM的顺利掘进提供可靠的作业条件。研究成果为保障隧洞顺利掘进提供了技术支持,也可为其他同类超长深埋隧洞的修建提供参考。
Abstract
The large deformation of soft rock, which is of obvious creep characteristics, seriously threatens the safe operation of TBM (tunnel boring machine). In this paper we analyze and evaluate the deformation of surrounding rock and the safety of supporting structure in the soft rock TBM tunneling segment of a deep-buried water conveyance tunnel. We also investigate into the creep characteristics of soft rock under high stress conditions and compares the stress states of segment structures supported with different methods. Results demonstrate that the stress state of segment and the safety margin of segment structure can be effectively improved by adopting large cross-sectional expansion excavation in association with a buffer layer consisting pea gravel layer and polyethylene foam plate. We suggest to provide reliable working condition for TBM by selecting suitable expansion excavation section and support method as well as reserving enough space for surrounding rock deformation via targeted rock rheological tests and deformation monitoring for similar deep buried tunnel projects. The research findings offer technical support for smooth tunneling, and also provide reference for the construction of similar ultra-long deep-buried tunnels.
关键词
TBM掘进 /
挤压大变形 /
蠕变 /
管片 /
聚乙烯缓冲层
Key words
TBM tunneling /
large extrusion deformation /
creep /
segment /
polyethylene buffer layer
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 姜 云,李永林,李天斌,等.隧道工程围岩大变形类型与机制研究[J].地质灾害与环境保护,2004,15(4):46-51.
[2] 徐则民,黄润秋.深埋特长隧道及其施工地质灾害[M].成都:西南交通大学出版社,2000.
[3] 苏利军,翁建良,卢文波.千米深埋隧洞高地应力稳定分析及其工程应用[J].岩土力学,2008,29(增刊1):221-226.
[4] 付 敬,董志宏,丁秀丽,等.高地应力下深埋隧洞软岩段围岩时效特征研究[J].岩土力学,2011,32(增刊2):444-448.
[5] 黄 兴,刘泉声,刘 滨,等.TBM围岩挤压大变形特性分析与等级划分[J].采矿与安全工程学报,2015,32(2):260-266.
[6] 朱昌星, 阮怀宁, 朱珍德, 等. 锦屏深埋长大引水隧洞围岩蠕变特性仿真分析[J]. 地下空间与工程学报, 2006(6):921-925.
[7] 谭志勇.TBM在水利工程中的应用与展望[J].中国水利,2015(14):94-96.
[8] 王希宝.都汶公路龙溪隧道围岩大变形机制及防治研究[D].成都:成都理工大学,2008.
[9] 何满潮.软岩巷道工程概论[M].徐州:中国矿业大学出版社,1993.
[10]尹俊涛,尚彦军,傅冰骏,等.TBM掘进技术发展及有关工程地质问题分析和对策[J].工程地质学报,2005(3):389-397.
[11]温 森,杨圣奇,董正方,等.深埋隧道TBM卡机机理及控制措施研究[J].岩土工程学报,2015,37(7):1271-1277.
[12]周春华,尹健民,丁秀丽,等.秦岭深埋引水隧洞地应力综合测量及区域应力场分布规律研究[J].岩石力学与工程学报,2012,31(增刊1):2956-2964.
[13]董志宏,丁秀丽,邬爱清.软岩三维粘弹塑性参数辨识研究[J].raybet体育在线
院报,2008,25(5):24-28.
[14]张钦鹏,梁庆国,王新东.宝兰客专第三系泥岩隧道围岩变形规律研究[J].铁道建筑,2016(11):73-76.
[15]肖丛苗,张顶立,谭可可.大跨度隧道围岩流变参数智能分析及稳定性评价[J].岩石力学与工程学报,2015,34(10):2038-2046.
基金
国家自然科学基金项目(51979008);raybet体育在线
创新团队项目(CKSF2021715/YT);云南省重大科技专项计划项目(202102AF080001)