在气候变化和人类活动影响下,内陆河流域出山径流变异程度提升,研究径流预测及其对气候变化响应具有理论和实践的双重意义。以讨赖河流域上游为研究区,采用Delta降尺度及权重集成方法对14种GCMs在3种RCP情景下的气温和降水进行优化,预测分析了该区未来径流变化和水资源供需平衡。结果表明:由气候-生态联合驱动的径流预测模式在讨赖河流域适用性良好,气温对出山径流总体呈负减效应,降水和NDVI表现为正增效应。未来气温和降水呈增加趋势,增温主要发生在河谷地带,降水增加在分水岭周边更为显著。流域出山径流总体增加,不同子区径流变幅从小到大依次为OL06<OL04<OL05<OL01<OL03<OL02。尽管未来出山径流有所增加,但从水资源满足度来看,平、枯水年讨赖河流域仍存在水资源短缺问题。
Abstract
Affected by climate change and human activities, mountainous discharge has undergone dramatic variability in inland river basins. Forecasting mountainous discharge and investigating its response to climate change are of great significance in both research and practice. The future runoff change and the supply-demand balance of water resources in Taolai River Basin were predicted and analyzed by optimizing 14 of the GCMs (Global Climate Models) outputs under three RCP scenarios to determine future air temperature and precipitation using the Delta downscaling and weight-based integration methods. The calibrated climate-ecological driving module is suitable for the mountainous discharge simulation in Taolai River Basin. Negative impacts of air temperature and positive impacts of precipitation and NDVI are also found. GCMs outputs indicate an overall increase of mountainous air temperature and precipitation, of which the former is mainly found in valleys while the latter more remarkable near the drainage divide. Mountainous discharge in the studied basin displays an overall increasing trend, and the variation amplitude in different sub-areas follow the sequence of OL06, OL04, OL05, OL01, OL03 and OL02 from small to large. Despite the increase of mountainous discharge, water shortage still exists during normal and dry hydro-years under the three RCP scenarios.
关键词
气候变化 /
GCMs降尺度 /
出山径流预测 /
不确定性 /
水资源满足度
Key words
climate change /
GCMs downscaling /
mountainous discharges forecasting /
uncertainty /
water resources satisfaction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] IPCC. Climate Change Synthesis Report. Cambridge and New York: Cambridge University Press, 2014.
[2] 赵东升, 吴绍洪. 气候变化情景下中国自然生态系统脆弱性研究. 地理学报, 2013, 68(5): 602-610.
[3] 孙徐阳, 李卫明, 粟一帆, 等,香溪河流域水生态系统健康评价. 环境科学研究, 2021, 34 (3): 599-606.
[4] 陈 莉. 基于PCA-GASVM的晋陕甘宁地区生态环境评价. 干旱区地理, 2015, 38(6): 1262-1269.
[5] 张明贵. 浅析气候变化及人类活动对西北干旱区水资源的影响. 农业科技与信息, 2020 (4): 43-44.
[6] 常玉婷, 尤 斌. 基于水足迹理论的干旱区水资源可持续利用评价.干旱环境监测, 2019, 33(4): 150-154.
[7] 龙爱华, 魏潇娜, 张 继, 等. 近16年来新疆内陆河区生态耗水及其变化分析. 水利水电技术, 2019, 50(12): 170-177.
[8] 张宝泉, 田明国. 对讨赖河流域水资源优化配置的认识和思考. 水利发展研究, 2016, 16(4): 53-55.
[9] 高 妍, 冯 起, 李宗省, 等. 1957—2012年讨赖河流域降水变化特征. 干旱区研究, 2016, 33(2): 275-282.
[10] 高 妍, 冯 起, 李宗省, 等. 祁连山讨赖河流域1957—2012年极端气候变化. 中国沙漠, 2014, 34(3): 814-826.
[11] 徐浩杰, 杨太保, 柴绍豪. 1961—2010年讨赖河山区径流变化特征及其驱动因素. 中国沙漠, 2014, 34(3): 878-884.
[12] 李生才, 赵志权.讨赖河流域生态健康状况分析与评价. 水利规划与设计, 2020(7):79-82.
[13] 张建成. 讨赖河流域水库联合调度运行管理模式初探. 农业科技与信息, 2016(32): 159-160.
[14] 左其亭, 张志卓, 姜 龙, 等. 全面建设小康社会进程中黄河流域水资源利用效率时空演变分析. 水利水电技术, 2020, 51(12): 16-25.
[15] 夏玮静, 王宁练, 沈 月. 基于流域的陕西省水资源承载力研究.干旱区地理, 2020, 43(3): 602-611.
[16] 罗 敏, 刘 铁, 黄 粤, 等. 未来气候情景下和田河流域日径流过程模拟. 水资源与水工程学报, 2016, 27(2): 11-17.
[17] 韩冬冬, 朱仲元, 宋小园, 等. 土地覆被和气候变化对锡林河流域径流量的影响. 水土保持研究, 2019, 26(2): 153-160.
[18] 李兰海, 白 磊, 姚亚楠, 等. 基于IPCC情景下新疆地区未来气候变化的预估. 资源科学, 2012, 34(4): 602-612.
[19] YAO N,LI L,FENG P,et al. Projections of Drought Characteristics in China Based on a Standardized Precipitation and Evapotranspiration Index and Multiple GCMs. Science of the Total Environment,2020,704(20):135245.
[20] 李国栋, 张俊华, 王乃昂, 等. 基于重标极差分析和非周期循环分析的气候变化趋势预测:以兰州市为例. 干旱区研究, 2013, 30(2): 299-307.
[21] ZHAO Q, LIU S, DENG L,et al. Assessing the Damming Effects on Runoff Using a Multiple Linear Regression Model: A Case Study of the Manwan Dam on the Lancang River. Procedia Environmental Sciences, 2012(13): 1771-1780.
[22] MANIQUIZ M, LEE S, KIM L. Multiple Linear Regression Models of Urban Runoff Pollutant Load and Event Mean Concentration Considering Rainfall Variables. Journal of Environmental Sciences, 2010, 22 (6): 946-952.
[23] WU C, HUANG C. Projection of Climate Extremes in the Zhujiang River Basin Using a Regional Climate Model. International Journal of Climatology, 2016, 36(3): 1184-1196.
[24] BAE D, JUN I, LETTENMAIER D P. Hydrologic Uncertaintiesin Climate Change from IPCC AR4 GCM Simulations of the Chungju Basin, Korea. Journal of Hydrology, 2011, 401(1/2): 90-105.
[25] XU K, XU B, WU C,et al. Projection and Uncertainty of Precipitation Extremes in the CMIP5 Multimodel Ensembles over Nine Major Basins in China . Atmospheric Research, 2019, 266(16): 122-137.
[26] WANG Z, ZHONG R, LAI C,et al. Climate Change Enhances the Severity and Variability of Drought in the Pearl River Basin in South China in the 21st Century. Agricultural and Forest Meteorology, 2018, 249: 149-162.
[27] PESCE M, CRITTO A, TORRESAN S,et al. Assessing Uncertainty of Hydrological and Ecological Parameters Originating from the Application of an Ensemble of Ten Global-Regional Climate Model Projections in a Coastal Ecosystem of the Lagoon of Venice, Italy. Ecological Engineering, 2019, 133: 121-136.
[28] GAO J, SHESHUKOV A, YEN H,et al. Uncertainty of Hydrologic Processes Caused by Bias-corrected CMIP5 Climate Change Projections with Alternative Historical Data Sources. Journal of Hydrology, 2019, 568: 551-561.
[29] LI Z, LI Q, WANG J,et al. Impacts of Projected Climate Change on Runoff in Upper Reach of Heihe River Basin Using Climate Elasticity Method and GCMs. Science of the Total Environment, 2020, 716: 137072.
[30] AHMAD M, MOTAMEDVAZIRI B, AHMADI H,et al. Assessment of Climate Change Impact on Surface Runoff, Statistical Downscaling and Hydrological Modeling. Physics and Chemistry of the Earth, Part A/B/C, 2019, 114: 102800.
基金
兰州大学西部环境教育部重点实验室开放基金及兰州大学中央高校基本科研业务费专项资金项目(lzujbky-2020-kb01);甘肃省科技重大专项计划项目(20ZD7FA005)