为了对比分析不同类型纤维的加筋效果及其作用机制,选取玄武岩纤维、聚丙烯纤维、聚酯纤维和玻璃纤维4种常用的人工合成纤维,以黄土为研究对象,在控制试样含水率、干密度、纤维长度和掺量等参数一定的条件下,制备5组试样进行直剪试验。试验结果表明:①纤维加筋前,土体的剪应力-剪切位移曲线存在比较明显的应变软化特征,纤维加筋后的曲线逐渐由应变软化转化为应变硬化。②纤维的掺入能够有效提高土体的抗剪强度。比较而言,玄武岩纤维的增强效果较其他纤维更好,玄武岩纤维加筋土的黏聚力和内摩擦角增幅分别为52.03%和24.30%;聚丙烯纤维次之,增幅分别为45.94%和16.01%;聚酯纤维和玻璃纤维增强效果相对较差。③加筋土黏聚力的提升与纤维-土界面的黏结力、纤维自身的抗拉强度有关,内摩擦角的提升主要与纤维-土之间的界面摩擦力有关。比较而言,玄武岩纤维的表面粗糙,抗拉强度大,使得加筋土的抗剪性能提升明显。相关分析结果可为比选纤维加筋土类型提供较好的参考。
Abstract
The aim of this research is to compare and analyze the reinforcement effect and mechanism of different types of fibers. Four commonly used synthetic fibers, namely, basalt fiber, polypropylene fiber, polyester fiber, and glass fiber, were selected to prepare five groups of reinforced loess specimens for direct shear test by controlling water content, dry density, fiber length, and fiber content. Results demonstrated that: 1) before fiber reinforcement, the curves of shear stress versus shear displacement of loess displayed evident strain softening features; after fiber reinforcement, the strain softening turned into strain hardening. 2) Fibers escalated the shear strength of soil. Among the tested four fibers, basalt fiber has the best reinforcement effect by enhancing the cohesion and internal friction angle of soil by 52.03% and 24.30%, respectively, followed by polypropylene fiber with an increment by 45.94% and 16.01%, respectively. 3)The improvement of the cohesion of reinforced soil is related to the cohesive force of fiber-soil interface and the tensile strength of fiber itself; the increase of internal friction angle is mainly related to the interface friction between fiber and soil. Basalt fiber is of rough surface and large tensile strength, which significantly improves the shear properties of reinforced soil.
关键词
人工合成纤维 /
加筋土 /
剪切强度 /
抗拉强度 /
滑动摩擦力
Key words
synthetic fiber /
reinforced soil /
shear strength /
tensile strength /
sliding friction
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘宝生,唐朝生,李 建,等. 纤维加筋土工程性质研究进展[J].工程地质学报,2013,21(4):540-547.
[2] FALORCA I, PINTO M. Effect of Short, Randomly Distributed Polypropylene Microfibres on Shear Strength Behaviour of Soils[J]. Geosynthetics International, 2011, 18(1), doi: 10.1680/GEIN.2011.18.1.2.
[3] 介玉新,李广信,陈 轮.纤维加筋土和素土边坡的离心模型试验研究[J].岩土工程学报,1998,20(4):15-18.
[4] 孔玉侠,沈飞凡,王慧娟.聚丙烯纤维加筋砂土的剪胀特性[J].岩土工程学报,2018,40(12):2249-2256.
[5] 陈 乐,刘志彬,周书中.聚丙烯纤维加筋对高岭土固结压缩特性影响试验研究[J].岩土力学,2015,36(增刊1):372-376.
[6] 胡文乐,何朋立,刘 华.玄武岩纤维黄土抗剪强度变化规律与最优配合比分析[J].中国地质灾害与防治学报,2019,30(4):92-97.
[7] 尤 波,徐洪钟,董金梅.玄武岩纤维加筋膨胀土三轴试验研究[J].防灾减灾工程学报,2015,35(4):503-507,514.
[8] 高 磊,胡国辉,杨 晨,等. 玄武岩纤维加筋黏土的剪切强度特性[J].岩土工程学报,2016,38(增刊1):231-237.
[9] CHEN C, ZHANG G, ZORNBERG J G, et al. Interface Bond Behavior of Tensioned Glass Fiber-reinforced Polymer (GFRP) Tendons Embedded in Cemented Soils[J]. Construction and Building Materials, 2020,263: 120132.
[10] 李丽华,万 畅,刘永莉,等. 玻璃纤维加筋砂土剪切强度特性研究[J].武汉大学学报:工学版,2017,50(1):102-106.
[11] 胡 达,璩继立.纤维素纤维加筋土的力学特性[J].公路交通科技,2018,35(1):22-27,35.
[12] JTG E40—2007,公路土工试验规程[S].北京:人民交通出版社,2007.
[13] 高 磊,胡国辉,陈永辉,等.玄武岩纤维加筋黏土三轴试验研究[J].岩土工程学报,2017,39(增刊1):198-203.
[14] TANG C S, SHI B, GAO W, et al. Strength and Mechanical Behavior of Short Polypropylene Fiber Reinforced and Cement Stabilized Clayey Soil[J]. Geotextiles and Geomembranes, 2006, 25(3): 194--202.
[15] 璩继立,胡晨凯,赵超男.玄武岩纤维和纳米二氧化硅加筋上海黏土的抗剪强度试验研究[J].水资源与水工程学报,2017,28(3):186-192.
基金
国家自然科学基金资助项目(51679127);三峡库区地质灾害教育部重点实验室(三峡大学)开放研究基金项目(2018KDZ04);三峡大学2018级硕士学位论文培优基金项目(2020SSPY024)