为研究干湿循环作用下砂岩力学特性的劣化规律,对经历不同干湿循环次数下的弱胶结砂岩进行核磁共振(NMR)及单轴压缩试验,采用声发射技术(AE)实时监测砂岩受荷破坏过程,并采用砂岩孔隙度定义损伤变量,建立干湿循环受荷条件下岩石损伤劣化模型,探究岩体在干湿-受荷作用下的损伤劣化机制。结果表明:①砂岩在循环初期的驰豫时间T2谱面积增幅最大,且随循环次数的增长不断减小;单轴压缩后的岩样,其T2谱面积相较于破坏前增长幅度显著。②随循环次数的增加,砂岩试样的塑性变形不断增大,声发射累计振铃数呈降低趋势,降低幅度最大达76.21%。③单轴抗压强度和弹性模量均随干湿循环次数的增大呈指数衰减;引入劣化度表征岩石力学参数的劣化程度,发现岩石单轴抗压强度的劣化速率随孔隙度的增长不断减缓。
Abstract
In the purpose of obtaining the deterioration of mechanical properties of sandstone under drying-wetting cycles, we conducted NMR and uniaxial compression tests on weakly cemented sandstones under different drying-wetting cycles, and monitored the damage process of sandstone under loading by using acoustic emission (AE) technology. By defining the porosity of sandstone as damage variable, we built damage deterioration model of rock under cyclic drying-wetting loading to explore the damage deterioration mechanism of loaded rock mass under drying-wetting. Our findings demonstrated that the increment of spectrum area of sandstone peaked at the beginning of cycle, and then attenuated with the proceeding of dry-wet cycles; the T2 spectral area of rock sample after uniaxial compression surged compared with that before failure. With the increase of cycle number, the plastic deformation of sandstone samples augmented, and the cumulative AE ring count reduced by 76.21% to the most. The uniaxial compressive strength and elastic modulus both decayed exponentially with the increase of drying-wetting cycles. By characterizing the deterioration of rock mechanical parameter with the deterioration degree, we found that the deterioration rate of uniaxial compressive strength decreased continuously with the increase of porosity.
关键词
岩石力学 /
干湿循环 /
声发射 /
核磁共振 /
劣化度 /
损伤演化
Key words
rock mechanics /
drying-wetting cycles /
acoustic emission /
nuclear magnetic resonance /
degree of deterioration /
damage evolution
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MORGENSTERN N R, EIGENBROD K D. Classification of Argillaceous Soils and Rocks[J]. Proceedings of ASCE Journal of the Geotechnical Engineering Division, 1974, 190: 1137-1156.
[2] BAREFIELD E, SHAKOOR A. The Effect of Degree of Saturation on the Unconfined Compressive Strength of Selected Sandstones[C]//Proceedings of the 10th IAEG International Congress. Nottingham, United Kingdom, September 6-10, 2006: 606.
[3] 姚华彦,张振华,朱朝辉,等. 干湿交替对砂岩力学特性影响的试验研究[J]. 岩土力学,2010,31(12):3704-3708.
[4] 刘新荣,李栋梁,张 梁,等. 干湿循环对泥质砂岩力学特性及其微细观结构影响研究[J]. 岩土工程学报,2016,38(7):1291-1299.
[5] 马芹永,郁培阳,袁 璞. 干湿循环对深部粉砂岩蠕变特性影响的试验研究[J]. 岩石力学与工程学报,2018,37(3):593-600.
[6] 王 伟,龚传根,朱鹏辉,等. 大理岩干湿循环力学特性试验研究[J]. 水利学报,2017,48(10):1175-1184.
[7] 周科平,李杰林,许玉娟,等.基于核磁共振技术的岩石孔隙结构特征测定[J]. 中南大学学报(自然科学版),2012,43(12):4796-4800.
[8] 周科平,李杰林,许玉娟,等. 冻融循环条件下岩石核磁共振特性的试验研究[J]. 岩石力学与工程学报, 2012,31(4):731–737.
[9] 钟祖良,罗玮坤,刘新荣,等. 基于核磁共振技术的酸性环境下灰岩力学特性劣化试验[J]. 煤炭学报,2017,42(7):1740-1740.
[10] 宋勇军,张磊涛,任建喜,等. 基于核磁共振技术的弱胶结砂岩干湿循环损伤特性研究[J]. 岩石力学与工程学报,2019,38(4):825-831.
[11] YUE F M, SHENG L L, YAN Q W. Acoustic Emission Testing Method for the Sleeve Grouting Compactness of Fabricated Structure[J]. Construction and Building Materials, 2019, 221: 800-810.
[12] EBRAHIMIAN Z, AHMADI M. Wavelet Analysis of Acoustic Emissions Associated with Cracking in Rocks[J]. Engineering Fracture Mechanics, 2019, 217: 1-10.
[13] RONG X S, LI M Q, EN L Z. Experimental Study on Frequency and Amplitude Characteristics of Acoustic Emission During the Fracturing Process of Coal under the Action of Water[J]. Safety Science, 2019, 117: 320-329.
[14] 张 磊,贾奇峰,贾 炳,等. 煤样加载过程声发射特征及变形演[J]. 煤炭技术,2017,36(7):76-78.
[15] 张国凯,李海波,王明洋,等. 单裂隙花岗岩破坏强度及裂纹扩展特征研究[J]. 岩石力学与工程学报,2019,38(增刊1):2760-2771.
[16] KACHANOV L M. On the Time to Failure under Creep Conditions[J]. Izv. Akad Nauk, 1958(8): 26-31.
[17] 李新平,路亚妮,王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报,2013,32(11):2307-2315.
[18] 张全胜,杨更社,任建喜.岩石损伤变量及本构方程的新探讨[J].岩石力学与工程学报,2003,22(1): 31-34.
[19] 袁 璞,马冬冬. 干湿循环与动载耦合作用下煤矿砂岩损伤演化及本构模型研究[J]. raybet体育在线
院报,2019,36(8):119-124.
[20] 樊水龙. 基于SEM的干湿循环蚀变花岗岩分形特征与力学特性演化规律[J]. raybet体育在线
院报,2020,37(3):102-107.
基金
国家自然科学基金项目(11872299,11402195,11972283)