针对水泥改性淤泥质软土受冻融循环效应影响的工程问题,开展冻融循环处理后水泥土三轴剪切试验、CT扫描试验和SEM扫描试验,研究了不同冻融循环次数(0~10)次下水泥土的力学特征和微结构损伤规律。试验结果表明:水泥土三轴应力-应变曲线均为应变硬化曲线,黏聚力、内摩擦角随循环次数增加而逐渐减小,且分别表现为指数型和线性衰减趋势;根据CT扫描图像的二值化处理结果对裂隙演化规律进行了定量分析,发现裂隙率随循环次数增加保持指数型增加;在冻融循环过程中裂隙率与强度指标的变化保持一定的同步性;由SEM扫描试验可以观测到冻融循环使水泥土内部的水泥基胶结物流失,颗粒间密实度下降,这是导致裂隙扩展和力学性能衰减的微观机制。
Abstract
In the aim of understanding the changes of cement-reinforced silty soft soil under freeze-thaw cycles, we conducted triaxial compression tests, CT scanning, and SEM scanning on cement-soil specimens undergone 0-10 times of cyclic freezing and thawing to examine the mechanical properties and microstructural damage of soil specimens. Results revealed that the stress-strain curves of cement-soil displayed strain hardening features. With the increase of freeze-thaw cycles, the cohesion and internal friction angle shrank in exponential and linear trends, respectively. Binary results of CT scanning images manifested that the crack rate rose exponentially with the increase of freeze-thaw cycles. During cyclic freezing and thawing, the change of fracture rate synchronized with those of strength indicators. Moreover, from SEM scanning we observed losses of cementitious agents in the cement-soil and decay of compactness among particles, which led to the expansion of cracks and degradation of mechanical properties.
关键词
水泥土 /
冻融循环 /
三轴试验 /
裂隙特征 /
微观形态
Key words
cement-soil /
freeze-thaw cycles /
triaxial test /
fracture characteristic /
microstructure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 于 伟,折学森.长江三角洲区域性软土路基沉降特性研究[J].安全与环境学报,2016,16(6):102-108.
[2] 刘素梅,胡慧莹,李春光,等.滨海软土黏滞系数非线性特性及其表达[J].raybet体育在线
院报,2020,37(2):119-125.
[3] LIU J, WANG T, TIAN Y. Experimental Study of the Dynamic Properties of Cement-and-lime-modified Clay Soils Subjected to Freeze-Thaw Cycles[J]. Cold Regions Science & Technology, 2010, 61(1):29-33.
[4] 安 然,孔令伟,黎澄生,等.炎热多雨气候下花岗岩残积土的强度衰减与微结构损伤规律[J].岩石力学与工程学报,2020,39(9):1902-1911.
[5] 周春梅,王琴华,张静波,等.干湿和冻融循环对压实黄土路用性能影响的试验研究[J].防灾减灾工程学报,2019,39(3):533-540.
[6] 尤 忆,向 杰.水泥稳定土强度和微观结构的冻融损伤规律[J].硅酸盐通报,2020,39(2):453-458.
[7] 徐丽娜,牛 雷,张 颖,等.冻融循环作用下玄武岩纤维水泥土力学性质研究[J].工业建筑,2020,50(3):109-113.
[8] 崔宏环,裴国陆,姚世军,等.不同养生龄期下水泥土经冻融循环后力学性能试验探究[J].冰川冻土,2018,40(1):110-115.
[9] 陈四利,史建军,于 涛,等.冻融循环对水泥土力学特性的影响[J].应用基础与工程科学学报,2014,22(2):343-349.
[10]宋爱苹,张亚飞.冻融条件下水泥土及掺粉煤灰水泥土的强度特性[J].中外公路,2017,37(3):221-223.
[11]YAN C G, ZHANG Z Q, JING Y L. Characteristics of Strength and Pore Distribution of Lime-Flyash Loess under Freeze-Thaw Cycles and Dry-Wet Cycles[J]. Arabian Journal of Geosciences, 2017, 24(10): 530-544.
[12]田俊峰,杨更社,叶万军,等.基于湿载-冻-融耦合作用的黄土灵敏度特性研究[J].人民黄河,2018,40(2):121-125.
[13]杨振北,胡东旭,汪时机.膨胀土胀缩裂隙演化及其扰动规律分析[J].农业工程学报,2019,35(17):169-177.
[14]许 雷,鲁 洋,薛 洋,等.冻融循环下水泥改性膨胀土物理力学特性研究[J].raybet体育在线
院报,2017,34(4):87-91,103.
[15]卢再华,陈正汉,蒲毅彬.膨胀土干湿循环胀缩裂隙演化的CT试验研究[J].岩土力学,2002(4):417-422.
基金
江苏建筑节能与建造技术协同创新中心开放基金项目(SJXTQ1603);江苏省第五期“333工程”科研资助立项项目(BRA2018343)