长江中游岸线水域典型污染物种类与来源解析

唐海滨, 代嫣然, 范垚城, 雷磊, 宋晓勇, 寸得寿, 韩建, 梁威

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (6) : 151-159.

PDF(2238 KB)
PDF(2238 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (6) : 151-159. DOI: 10.11988/ckyyb.20210067
长江技术经济学会2020年学术年会暨长江治理与保护科技创新高端论坛专栏

长江中游岸线水域典型污染物种类与来源解析

  • 唐海滨1,2, 代嫣然1, 范垚城1,2, 雷磊1,2, 宋晓勇1,2, 寸得寿1,2, 韩建1, 梁威1
作者信息 +

Typical Pollutants in Waters along the Riverbank of the Yangtze River Middle Mainstream: Species Identification and Source Analysis

  • TANG Hai-bin1,2, DAI Yan-ran1, FAN Yao-cheng1,2, LEI Lei1,2, SONG Xiao-yong1,2, CUN De-shou1,2, HAN Jian1, LIANG Wei1
Author information +
文章历史 +

摘要

以长江中游宜昌段、武汉段和黄石段3个监测断面为研究对象,选取农业渔业、工业生产、港口物流、过江交通和城镇生活共5种典型开发类型岸线,鉴别了不同开发类型岸线水域主要污染物种类,同时解析了其时空分布状况。结果表明,依据《地表水环境质量标准》(GB 3838—2002)和《生活饮用水卫生标准》(GB 5749—2006),3个监测断面不同类型岸线水域污染物主要包括常规污染物总氮、总磷、氨氮以及重金属铁、锰。不同污染物呈现一致的空间特征,3个断面中宜昌段水质最差,武汉段最好。而季节规律存在一定差异,3个断面常规污染物平均浓度秋季最高夏季最低,重金属则为秋冬季较高春季较低。5种岸线开发类型中,城镇生活岸线污染最为突出,总氮、总磷、氨氮、铁和锰平均浓度分别为11.58、0.83、5.85 mg/L,351.67、147.66 μg/L,超标倍数分别为11.58、4.15、5.85、1.17、1.48倍。3个断面农业渔业岸线,水体中共检出8种拟除虫菊酯类农药、33类有机磷农药和12种有机氯类农药,化工企业岸线上检出13种多环芳烃,其含量最高的分别为胺菊酯、特普、4.4′-滴滴涕和茚并(1,2,3-cd)芘,但均低于标准限值。依据比值法分析的源解析结果,多环芳烃主要来源为木材、煤以及少量油类。研究结果可为长江岸线的合理开发和结构优化以及长江大保护提供一定的数据支持。

Abstract

To identify the major pollutants in the surface waters along the riverbank of the Yangtze River middle mainstream and explore their temporal and spatial distribution, we conducted a survey on five typical types of riverbanks which have been exploited for agriculture and fishery, industrial production, port logistics, river crossing transportation, and urban living. We selected Yichang, Wuhan, and Huangshi in the middle mainstream of the Yangtze River as three representative segments. According to the Environmental Quality Standard for Surface Water (GB 3838—2002) and the Standard for Drinking Water Quality (GB 5749—2006), we found that the main pollutants were total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH3-N), iron (Fe) and manganese (Mn). All the monitored pollutants presented a similar pattern of spatial variation, with the lowest annual mean concentration in Wuhan and the highest in Yichang. However, the temporal variations in conventional pollutants and heavy metals were different. For the conventional pollutants, the lowest mean concentration was found in summer while the highest value was in autumn. For heavy metals, the relatively higher concentrations were observed in autumn and winter, whereas the lower value was in spring. Along the middle mainstream of the Yangtze River, the riverbank exploited for urban living suffered from the most severe pollution, with annual mean concentrations of TN, TP, NH3-N, Fe and Mn across the three segments amounting to 11.58, 0.83, 5.83 mg/L, 351.67 , 147.66 μ g/L respectively, which exceeded the standard by 11.58, 4.15, 5.85, 1.17, and 1.48 folds. A total of 8 kinds of pyrethroid pesticides, 33 kinds of organophosphorus pesticides and 12 kinds of organochlorine pesticides were detected in the surface water along the agriculture and fishery riverbank. Besides, 13 polycyclic aromatic hydrocarbons (PAHs) were detected along the riverbank exploited for industrial production, with tetramethrin, tetraethyl pyrophosphate (TEPP), 4.4′- dichlorodiphenyltrichloroethane (DDT), and indeno (1, 2, 3-cd) pyrene as the major compositions, yet all lower than standard. The results of sources apportionment of PAHs showed that the PAHs stemmed from wood, coal and a small amount of oil. These research findings would contribute to the rational development and structural optimization of riverbanks, and better protecting the Yangtze River with providing useful data.

关键词

长江干流 / 岸线类型 / 污染物 / 重金属 / 农药 / 多环芳烃 / 长江大保护

Key words

mainstream of the Yangtze River / riverbank type / pollutants / heavy metal / pesticide / polycyclic aromatic hydrocarbons / Yangtze River Protection

引用本文

导出引用
唐海滨, 代嫣然, 范垚城, 雷磊, 宋晓勇, 寸得寿, 韩建, 梁威. 长江中游岸线水域典型污染物种类与来源解析[J]. raybet体育在线 院报. 2021, 38(6): 151-159 https://doi.org/10.11988/ckyyb.20210067
TANG Hai-bin, DAI Yan-ran, FAN Yao-cheng, LEI Lei, SONG Xiao-yong, CUN De-shou, HAN Jian, LIANG Wei. Typical Pollutants in Waters along the Riverbank of the Yangtze River Middle Mainstream: Species Identification and Source Analysis[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(6): 151-159 https://doi.org/10.11988/ckyyb.20210067
中图分类号: X321    TV213.4   

参考文献

[1] 杨 盼,卢 路,向晨光,等.长江干流氮、磷浓度变化趋势分析[J].环境工程,2019,37(2):175-178,183.
[2] 娄保锋,卓海华,周 正,等.近18年长江干流水质和污染物通量变化趋势分析[J].环境科学研究,2020,33(5):1150-1162.
[3] 蔡庆华.长江大保护与流域生态学[J].人民长江,2020,51(1):70-74.
[4] 洪亚雄.长江经济带生态环境保护总体思路和战略框架[J].环境保护,2017,45(15):12-16.
[5] 张 慧,高吉喜,乔亚军.长江经济带生态环境形势和问题及建议[J].环境与可持续发展,2019,44(5):28-32.
[6] 张厚明,秦海林.长江经济带“重化工围江”问题研究[J].中国国情国力,2017(4):38-40.
[7] 吴舜泽,王 东,姚瑞华.统筹推进长江水资源水环境水生态保护治理[J].环境保护,2016,44(15):16-20.
[8] 何艳梅.《长江保护法》关于流域管理体制立法的思考[J].环境污染与防治,2020,42(8):1054-1059.
[9] 杨桂山,施少华,王传胜,等.长江江苏段岸线利用与港口布局[J].长江流域资源与环境,1999,8(1):17-22.
[10] 王传胜,王开章.长江中下游岸线资源的特征及其开发利用[J].地理学报,2002(6):693-700.
[11] 王传胜.长江中下游岸线资源的保护与利用[J].资源科学,1999(6):3-5.
[12] 段学军,邹 辉.长江岸线的空间功能、开发问题及管理对策[J].地理科学,2016,36(12):1822-1833.
[13] 段学军,王晓龙,徐昔保,等.长江岸线生态保护的重大问题及对策建议[J].长江流域资源与环境,2019,28(11):2641-2648.
[14] 段学军,王晓龙,邹 辉,等.长江经济带岸线资源调查与评估研究[J].地理科学,2020,40(1):22-31.
[15] 尹静秋.基于GIS的长江江苏段岸线资源演变研究[D].南京:南京师范大学,2004.
[16] 潘坤友,曹有挥,梁双波.行政区划调整背景下芜湖市岸线资源的时空演变与优化[J].长江流域资源与环境,2013,22(4):418-425.
[17] 马荣华,杨桂山,陈 雯,等.长江江苏段岸线资源评价因子的定量分析与综合评价[J].自然资源学报,2004,19(2):176-183.
[18] 朱红云,杨桂山,万荣荣,等.港口布局中的岸线资源评价与生态敏感性分析:以长江干流南京段为例[J].自然资源学报,2005,20(6):851-858.
[19] 陈 欢,陈 雯,曹有挥,等.江苏苏中3市的沿江岸线资源开发利用变化及驱动因素[J].长江流域资源与环境,2015,24(5):711-718.
[20] HJ 494—2009,水质采样技术指导[S].北京:环境保护部,2009.
[21] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
[22] 王 丹,张 洪.三峡水库上游(宜宾至泸州段)水体重金属分布特征及其来源[J].三峡生态环境监测,2018,3(3):38-42.
[23] ZHANG Z L, HUANG J, YU G, et al.Occurrence of PAHs, PCBs and Organochlorine Pesticides in the Tonghui River of Beijing, China[J]. Environmental Pollution, 2004, 130(2): 249-261.
[24] HJ 478—2009,水质-多环芳烃的测定液液萃取和固相萃取高效液相色谱法[S].北京:中国环境科学出版社,2009.
[25] 邹家素,孙 静,张晓岭,等.长江嘉陵江重庆段多环芳烃的分布特征和来源辨析[J].环境化学,2017,36(6):1369-1376.
[26] 王 俊,汪金成,徐剑秋,等.2018年汉江中下游水华成因分析与治理对策[J].人民长江,2018,49(17):7-11.
[27] 安堃达,张 帅,程继雄,等.长江干流湖北段沿江城市水质状况及变化趋势研究[J].环境科学与管理,2020,45(7):156-160.
[28] 杜 维,李爱民,鲁 敏,等.长江武汉段水质重金属健康风险初步评价[J].环境科学与技术,2014,37(增刊2):535-539.
[29] 周晓铁,王 嘉,孙世群,等.饮用水水源地健康风险研究和实例分析[J].四川环境,2010,29(4):24-28.
[30] 周 慜,石 雷,李取生,等.珠江河口水体有机磷农药的含量与季节变化[J].中国环境科学,2013,33(2):312-318.
[31] 鲁垠涛,薛宏慧,张士超,等.长江流域岸边土中OCPs的残留特征、来源及风险评价[J].中国环境科学,2019,39(9):3897-3904.
[32] 徐 雄,李春梅,孙 静,等.我国重点流域地表水中29种农药污染及其生态风险评价[J].生态毒理学报,2016,11(2):347-354.
[33] 贾天琪,雷荣荣,武小琳,等.长江下游支流水体中多环芳烃的分布及生态风险评估[J].环境科学,2020,41(5):2221-2228.
[34] EPA440/5-86-001, Quality Criteria for Water[S]. Washington DC: US Environmental Protection Agency, 1987.
[35] 董 磊,汤显强,林 莉,等.长江武汉段丰水期水体和沉积物中多环芳烃及邻苯二甲酸酯类有机污染物污染特征及来源分析[J].环境科学,2018,39(6):2588-2599.
[36] 王 超,谭 丽,吕怡兵,等.长江重庆段表层水体中多环芳烃的分布及来源分析[J].环境化学,2015,34(1):18-22.
[37] YUNKER M B, MACDONALD R W, VINGARZAN R, et al.PAHs in the Fraser River Basin: A Critical Appraisal of PAH Ratios as Indicators of PAH Source and Composition[J]. Organic Geochemistry, 2002, 33(4): 489-515.
[38] MURRAY K E, THOMAS S M, BODOUR A A. Prioritizing Research for Trace Pollutants and Emerging Contaminants in the Freshwater Environment[J]. Environmental Pollution, 2010, 158(12): 3462-3471.

基金

中国科学院战略性先导科技专项A类项目(XDA23040401)

PDF(2238 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map