基于国产卫星多光谱影像的河流水体浊度遥感联合反演研究

肖潇, 徐坚, 赵登忠, 赵保成, 徐健, 程学军, 李国忠

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (6) : 128-136.

PDF(9952 KB)
PDF(9952 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (6) : 128-136. DOI: 10.11988/ckyyb.20200337
信息技术应用

基于国产卫星多光谱影像的河流水体浊度遥感联合反演研究

  • 肖潇1, 徐坚1,2,3, 赵登忠1,3, 赵保成1,3, 徐健1,3, 程学军1,3, 李国忠1,3
作者信息 +

Combined Remote Sensing Retrieval of River Turbidity Based on Chinese Satellite data

  • XIAO Xiao1, XU Jian1,2,3, ZHAO Deng-zhong1,3, ZHAO Bao-cheng1,3, XU Jian1,3, CHENG Xue-jun1,3, LI Guo-zhong1,3
Author information +
文章历史 +

摘要

基于集合建模思想,在水体光谱特征分析与敏感波段选择基础上,集成多种遥感反演模型优势,构建了河流水体浊度多光谱遥感联合反演模型(Combined Model-BP,CM-BP)。选择汉江中下游典型河段为研究区,利用2012—2013年原位观测数据,以具有较高时间分辨率和空间分辨率的国产卫星数据作为多光谱遥感数据源,测试评估了CM-BP浊度遥感反演模型适用性,并与传统波段组合模型进行精度比较,基于反演结果分析了研究区浊度时空分布特征。结果表明:基于集合建模思想构建的CM-BP模型的反演精度、适应性及稳定性均高于波段组合模型;从光谱分辨率、时空分辨率等角度考虑,环境与灾害监测预报小卫星星座系统、高分一号卫星、资源三号等国产卫星多光谱遥感数据是河流水体水质反演优选数据源;国产卫星遥感数据可以满足河流水体水质高精度、实时性与大尺度等遥感反演需要,为河流水环境监测研究提供数据基础。

Abstract

Inspired by combined modeling idea, we constructed a CM-BP (Combined Model-Back Propagation) for multispectral remote-sensing retrieval of river water turbidity by integrating the advantages of multiple remote-sensing retrieval models based on analyzing spectral characteristics of water bodies and selecting sensitive bands. With the in-situ observation data in 2012-2013 in typical reaches of the middle and lower Hanjiang River as a case study, we tested and assessed the applicability of the proposed CM-BP with domestic satellite data of high temporal and spatial resolutions as multispectral remote-sensing data sources. Furthermore, we compared the proposed CM-BP with traditional band-combined models in terms of retrieval precision, and meanwhile dissected the temporal and spatial distribution characteristics of the turbidity of Hanjiang River based on retrieval results. Results demonstrated that CM-BP boasts higher retrieval accuracy, applicability and stability than band-combined models. From the perspectives of spectral, temporal and spatial resolutions, multispectral remote-sensing data of Chinese domestic satellites like environment and disaster monitoring and forecasting small-satellite constellation, GF-1, and ZY-3 can be considered as optimal data sources for water quality retrieval of river. Remote-sensing data from Chinese domestic satellites meets the demand in high-accuracy, real-time and large-scale of remote-sensing retrieval of river water quality, thus providing a data basis for environmental monitoring studies of river.

关键词

河流水体浊度 / 国产卫星 / 多光谱影像 / 遥感 / 联合反演模型 / 河流水环境监测

Key words

turbidity of river water / Chinese satellite / multispectral image / remote sensing / combined retrieval model / water environmental monitoring of river

引用本文

导出引用
肖潇, 徐坚, 赵登忠, 赵保成, 徐健, 程学军, 李国忠. 基于国产卫星多光谱影像的河流水体浊度遥感联合反演研究[J]. raybet体育在线 院报. 2021, 38(6): 128-136 https://doi.org/10.11988/ckyyb.20200337
XIAO Xiao, XU Jian, ZHAO Deng-zhong, ZHAO Bao-cheng, XU Jian, CHENG Xue-jun, LI Guo-zhong. Combined Remote Sensing Retrieval of River Turbidity Based on Chinese Satellite data[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(6): 128-136 https://doi.org/10.11988/ckyyb.20200337
中图分类号: X825    TP75   

参考文献

[1] FISHER T R, GUSTAFSON A B, SELLNER K, et al. Spatial and Temporal Variation of Resource Limitation in Chesapeake Bay[J]. Marine Biology, 1999, 133(4):763-778.
[2] 金同轨, 陈保平, 梁春华,等.黄河水浊度与含沙量、泥沙粒度之间的关系[J]. 中国给水排水, 1989(1):10-13.
[3] FOSTER I D L, MILLINGTON R, GREW R G. The Impact of Particle Size Controls on Stream Turbidity Measurement: Some Implications for Suspended Sediment Yield Estimation[J]. Erosion and Sediment Transport Monitoring Programmes in River Basins, 1992, 210: 51-62.
[4] GIPPEL C J. Potential of Turbidity Monitoring for Measuring the Transport of Suspended Solids in Streams[J]. Hydrological Processes, 1995, 9(1):83-97.
[5] LEWIS J. Turbidity-controlled Suspended Sediment Sampling for Runoff-Event Load Estimation[J]. Water Resources Research, 1996, 32(7): 2299-2310.
[6] PAVANELLI D, PAGLIARANI A. SW—Soil and Water: Monitoring Water Flow, Turbidity and Suspended Sediment Load, from an Apennine Catchment Basin, Italy[J]. Biosystems Engineering, 2002, 83(4):463-468.
[7] HEYES A, MILLER C, MASON R P. Mercury and Methylmercury in Hudson River Sediment: Impact of Tidal Resuspension on Partitioning and Methylation[J]. Marine Chemistry, 2004, 90(1):75-89.
[8] KOPONEN S, PULLIAINEN J, KALLIO K, et al. Use of MODIS Data for Monitoring Turbidity in Finnish Lakes[C]//IEEE.International Geoscience and Remote Sensing Symposium(IGARSS),Sydney,Australia,July 9-13,2001.
[9] ZHANG Y, PULLIAINEN J T, KOPONEN SS, et al. Water Quality Retrievals from Combined Landsat Tm Data and Ers-2 Sar Data in the Gulf of Finland[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(3): 622-629.
[10] PETUS C,CHUST G,GOHIN F,et al. Estimating Turbidity and Total Suspended Matter in the Adour River Plume (South Bay of Biscay) Using Modis 250-M Imagery[J]. Continental Shelf Research,2010,30(5):379-392.
[11] RUDORFF N, RUDORFF C M, KAMPEL M, et al. Remote Sensing Monitoring of the Impact of a Major Mining Wastewater Disaster on the Turbidity of the Doce River Plume Off the Eastern Brazilian Coast[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 145:349-361.
[12] 段洪涛, 闻 钰, 张 柏, 等.应用高光谱数据定量反演查干湖水质参数研究[J]. 干旱区资源与环境, 2006, 20(6):104-108.
[13] HE W, CHEN S, LIU X, et al. Water Quality Monitoring in a Slightly-Polluted Inland Water Body Through Remote Sensing—Case Study of the Guanting Reservoir in Beijing, China[J]. Frontiers of Environmental Science & Engineering in China, 2008, 2(2): 163-171.
[14] 黄以琛, 李 炎, 邵 浩, 等.北部湾夏冬季海表温度、叶绿素和浊度的分布特征及调控因素[J]. 厦门大学学报(自然科学版), 2008, 47(6):856-863.
[15] CHEN C Q, SHI P, ZHAN H G. A Local Algorithm for Estimation of Yellow Substance (Gelbstoff) in Coastal Waters from SeaWiFS Data: Pearl River Estuary, China[J]. International Journal of Remote Sensing, 2003, 24(5):1171-1176.
[16] 郭邵萌.基于高光谱遥感的湖泊水质污染研究[D].济南:山东师范大学, 2013.
[17] 冯 奇, 程学军, 沈 欣,等.利用Landsat 8 OLI进行汉江下游水体浊度反演[J]. 武汉大学学报(信息科学版), 2017, 42(5):643-647.
[18] 胡静雯, 陈树果, 张亭禄,等.利用MODIS卫星遥感数据监测东中国海浊度的时空分布[J]. 海洋环境科学, 2015, 34(4):564-569.
[19] 宋 挺, 石俊哲, 刘军志,等. 基于Landsat-8卫星OLI数据的太湖水体蓝藻密度和浊度遥感定量反演研究[J]. 安全与环境工程, 2015, 22(6):67-71.
[20] 陈黄蓉, 张靖玮, 王胜强, 等. 长江口及邻近海域的浊度日变化遥感研究[J]. 光学学报, 2020, 40(5):34-46.
[21] 黄昌春, 李云梅, 徐良将,等. 内陆水体叶绿素反演模型普适性及其影响因素研究[J]. 环境科学, 2013, 34(2):525-531.
[22] BATES J M, GRANGER C W J. The Combination of Forecasts[J]. Journal of the Operational Research Society, 1969, 20(4): 451-468.
[23] HIBON M, EVGENIOU T. To Combine or Not to Combine: Selecting among Forecasts and Their Combinations[J]. International Journal of Forecasting, 2005, 21(1): 15-24.
[24] JEONG D I, KIM Y O. Combining Single-Value Streamflow Forecasts:A Review and Guidelines for Selecting Techniques[J]. Journal of Hydrology, 2009, 377(3-4): 284-299.
[25] 郭宝丽.基于灰色神经网络的年降水量组合预测模型研究[D]. 重庆:重庆大学,2014.
[26] YUAN Z, YAN D H, YANG Z Y, et al. Ensemble Model and Its Application in Runoff Simulation and Forecast[J]. Journal of Hydraulic Engineering, 2014, 3: 351-359.
[27] 霍文博, 李致家, 李巧玲.半湿润流域水文模型比较与集合预报[J]. 湖泊科学, 2017(6):215-225.
[28] 顾自强, 高 飞, 汪周园.汉江流域水资源现状及承载力研究[J]. 环境与可持续发展, 2014, 39(6):99-102.
[29] 刘青娥, 雷晓辉, 王 浩, 等.面向分布式水文模型的汉江流域空间离散化方法[J]. 南水北调与水利科技, 2009, 7(2):24-28.
[30] 李权国, 张中旺.汉江中下游流域生态环境保护与可持续发展策略[J]. 贵州农业科学, 2010, 38(12):205-207.
[31] 李铜基, 唐军武, 陈清莲,等.光谱仪测量离水辐射率的处理方法[J]. 海洋技术学报, 2000, 19(3):11-16.
[32] 唐军武, 田国良, 汪小勇,等.水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报, 2004, 8(1):37-44.
[33] 汪小勇, 唐军武, 李铜基, 等.水面之上法测量水体光谱的关键技术[J]. 海洋技术学报, 2012, 31(1):72-76.
[34] 董磊华, 熊立华, 万 民.基于贝叶斯模型加权平均方法的水文模型不确定性分析[J]. 水利学报, 2011, 42(9):1065-1074.
[35] PARRISH M A, MORADKHANI H, DECHANTC M. Toward Reduction of Model Uncertainty: Integration of Bayesian Model Averaging and Data Assimilation[J]. Water Resources Research, 2012, 48(3): 3519.
[36] NAJAFI M R , MORADKHANI H. Multi-model Ensemble Analysis of Runoff Extremes for Climate Change Impact Assessments[J]. Journal of Hydrology, 2015, 525:352-361.
[37] YAN H, MORADKHANI H. Toward More Robust Extreme Flood Prediction by Bayesian Hierarchical and Multimodeling[J]. Natural Hazards, 2016, 81(1): 203-225.
[38] 江善虎, 任立良, 刘淑雅, 等.基于贝叶斯模型平均的水文模型不确定性及集合模拟[J]. 中国农村水利水电, 2017(1):107-112.
[39] 张凤太, 张军以, 苏维词. 基于熵权和主成分分析的岩溶区水资源安全评价:以毕节为例[J]. 环境工程, 2016, 34(3):174-179.
[40] 詹 斌, 吕腊梅, 黄 馨.基于熵权法的公路货运量组合预测[J]. 物流技术, 2016, 35(6): 54-57.
[41] 王 浩, 李 扬, 任立良, 等.水文模型不确定性及集合模拟总体框架[J]. 水利水电技术, 2015, 46(6): 21-26.
[42] FERNANDO A K, SHAMSELDIN A Y, ABRAHART R J. Use of Gene Expression Programming for Multimodel Combination of Rainfall-Runoff Models[J]. Journal of Hydrologic Engineering, 2011, 17(9): 975-985.
[43] YOUNG C C, LIU W C, CHUNG C E. Genetic Algorithm and Fuzzy Neural Networks Combined with the Hydrological Modeling System for Forecasting Watershed Runoff Discharge[J]. Neural Computing and Applications, 2015, 26(7): 1631-1643.
[44] SINGH P, BORAH B. Indian Summer Monsoon Rainfall Prediction Using Artificial Neural Network[J]. Stochastic Environmental Research and Risk Assessment, 2013, 27(7): 1585-1599.
[45] PHUKOETPHIM P, SHAMSELDIN A Y, ADAMS K. Multimodel Approach Using Neural Networks and Symbolic Regression to Combine the Estimated Discharges of Rainfall-Runoff Models[J]. Journal of Hydrologic Engineering, 2016, 21(8): 04016022-1-18.
[46] 江衍铭, 张建全, 明 焱.集合神经网络的洪水预报[J]. 浙江大学学报(工学版), 2016, 50(8):1471-1478.
[47] WU J M, ZUO H F, YONG C.A Combined Forecasting Method Based on Particle Swarm Optimization with Immunity Algorithms[J]. Journal of Systems & Management, 2006, 15(3):229-233.
[48] BAHRAMI S, HOOSHMAND R A, PARASTEGARI M. Short Term Electric Load Forecasting by Wavelet Transform and Grey Model Improved by PSO (Particle Swarm Optimization) Algorithm[J]. Energy, 2014, 72(7): 434-442.
[49] JIN L, ZHU J, HUANG Y, et al. A Nonlinear Statistical Ensemble Model for Short-Range Rainfall Prediction[J]. Theoretical and Applied Climatology, 2015, 119(3/4):791-807.
[50] 王惠文.偏最小二乘回归的线性与非线性方法[M]. 北京: 国防工业出版社, 2006:190-198.

基金

raybet体育在线 中央级公益性科研院所基本科研业务费项目(CKSF2019410+KJ,CKSF2019411+KJ,CKSF2019528/KJ);国家重点研发专项(2018YFD1100105)

PDF(9952 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map