轻骨料混凝土抗碳化性能及微结构分析

姚韦靖, 庞建勇, 刘雨姗

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (4) : 138-143.

PDF(6608 KB)
PDF(6608 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (4) : 138-143. DOI: 10.11988/ckyyb.20200066
水工结构与材料

轻骨料混凝土抗碳化性能及微结构分析

  • 姚韦靖1,2,3, 庞建勇1,2, 刘雨姗1
作者信息 +

Carbonation Resistance Performance and Microstructure Analysis of Lightweight Aggregate Concrete

  • YAO Wei-jing1,2,3, PANG Jian-yong1,2, LIU Yu-shan1
Author information +
文章历史 +

摘要

为了探究轻骨料混凝土抗碳化性能及微结构,采用绝对体积法配制全轻骨料混凝土(ALWAC)和次轻骨料混凝土(SLWAC),并与普通混凝土(NC)比对,测试混凝土在各龄期下的碳化深度,通过MIP压汞测试对比研究NC和ALWAC碳化前后微细观孔结构变化。结果表明:轻骨料混凝土特有的内养护效果,轻骨料周围水泥石日趋密实,因而ALWAC和SLWAC较NC抗碳化性能优,且随碳化时间增长碳化速率显著降低;微结构分析表明经历28 d快速碳化试验后,NC和ALWAC孔隙率分别由14.36%、30.33%下降至13.53%、28.70%,定量说明了碳元素入侵造成大量孔隙被填充细化,与水泥水化产物反应生成CaCO3,孔径减小,密实度增加。最后给出了基于陶粒掺量的轻骨料混凝土碳化深度预测模型。研究成果可为轻骨料混凝土耐久性预测提供参考。

Abstract

All-light Weight Aggregate Concrete (ALWAC) and Sub-light Weight Aggregate Concrete (SLWAC) were prepared by absolute volume method, and were compared with Normal Concrete (NC) in terms of carbonation depth at different ages. The microstructure changes of NC and ALWAC before and after carbonation were compared by Mercury Intrusion Porosimetry (MIP). The results showed that ALWAC and SLWAC had better carbonation resistance than NC because of special internal curing effect of lightweight aggregate which led to more compact cement stone surrounding the ceramsite. The carbonation rate of ALWAC and SLAWAC also decreased apparently with the increasing of carbonation age. Microstructural analysis showed that after 28 days of accelerated carbonation experiment, the porosity of NC and ALWAC declined from 14.36% and 30.33% to 13.53% and 28.70%, respectively. The result quantitative explained the reduction of pore diameter and the augment of compactness by the intrusion of carbon which filled and refined a large number of pores and reacted with cement hydration products to generate CaCO3. In addition, a model predicting the carbonation depth of lightweight aggregate concrete in consideration of ceramsite content was given.

关键词

轻骨料混凝土 / 页岩陶粒 / 抗碳化性能 / MIP / 微观结构 / 碳化深度预测

Key words

light weight aggregate concrete / shale ceramisite / carbonation resistance performance / MIP / microscopic structure / carbonation depth prediction

引用本文

导出引用
姚韦靖, 庞建勇, 刘雨姗. 轻骨料混凝土抗碳化性能及微结构分析[J]. raybet体育在线 院报. 2021, 38(4): 138-143 https://doi.org/10.11988/ckyyb.20200066
YAO Wei-jing, PANG Jian-yong, LIU Yu-shan. Carbonation Resistance Performance and Microstructure Analysis of Lightweight Aggregate Concrete[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(4): 138-143 https://doi.org/10.11988/ckyyb.20200066
中图分类号: TU528.2   

参考文献

[1] 牛荻涛,孙丛涛. 混凝土碳化与氯离子侵蚀共同作用研究[J].硅酸盐学报,2013,41(8):1094-1099.
[2] 高英力,程 领,李 珂,等. 碳化作用下轻骨料混凝土干缩变形及影响规律[J].硅酸盐通报,2012,31(2):440-444,463.
[3] 王发洲. 高性能轻集料混凝土研究与应用[D].武汉:武汉理工大学,2003.
[4] 吴 涛,孙艺嘉,刘 喜. 大气环境下轻骨料混凝土耐久性能研究综述[J].建筑科学与工程学报,2017,34(5):154-162.
[5] 董作超. 煤矸石集料混凝土的力学性能与抗碳化试验研究[D].徐州:中国矿业大学,2016.
[6] 胡曙光,王发洲. 轻集料混凝土[M].北京:化学工业出版社,2006.
[7] LO T Y, TANG W C, NADEEM A. Comparison of Carbonation of Lightweight Concrete with Normal Weight Concrete at Similar Strength Levels[J]. Construction and Building Materials, 2008, 22(8): 1648-1655.
[8] KE Y, ORTOLA S, BEAUCOUR A L, et al. Indentification of Microstructural Characteristics in Lightweight Aggregate Concretes by Micromechanical Modelling including the Interfacial Transition Zone (ITZ)[J]. Cement and Concrete Research, 2010, 40: 1590-1600.
[9] 董淑慧,张宝生,葛 勇,等. 轻骨料-水泥石界面区微观结构特征[J].建筑材料学报,2009,12(6):737-741.
[10] 龚洛书. 关于轻集料混凝土抗碳化耐久性指标的规定[J].混凝土,1991(2):3-8.
[11] BOGAS J A, REAL S, FERRER B. Biphasic Carbonation Behavior of Structural Lightweight Aggregate Concrete Produced with Different Types of Binder[J]. Cement and Concrete Composites, 2016, 71: 110-121.
[12] FERRER B, BOGAS J A, REAL S. Service Life of Structural Lightweight Aggregate Concrete under Carbonation-induced Corrosion[J]. Construction and Building Materials, 2016, 120:161-171.
[13] 姚韦靖,庞建勇. 超细粉煤灰与粉煤灰混凝土力学性能对比试验研究[J].混凝土与水泥制品,2015(12):10-13.
[14] 姚韦靖. 深部高地温岩层巷道隔热混凝土喷层支护技术研究及应用[D].淮南:安徽理工大学,2019.
[15] 李平江,刘巽伯. 高强页岩陶粒混凝土的基本力学性能[J].建筑材料学报,2004,7(1):113-116.
[16] JGJ 55—2011, 普通混凝土配合比设计[S].北京:中国建筑工业出版社,2011.
[17] JGJ 51—2002, 轻骨料混凝土技术规程[S]. 北京:中国建筑工业出版社,2002.
[18] 张宝生,孔丽娟,袁 杰,等. 轻骨料预湿程度对混合骨料混凝土力学性能的影响[J].混凝土,2006(10):24-26,30.
[19] 刘保东,李鹏飞,李 林,等. 混凝土含水率对强度影响的试验[J].北京交通大学学报,2011,35(1):9-12.
[20] GB/T 50082—2009,普通混凝土长期性能和耐久性能试验方法标准[S].北京:中国建筑工业出版社,2009.
[21] 姚韦靖,庞建勇. 新型隔热混凝土喷层支护技术研究与应用[J].raybet体育在线 院报,2017,34(1):124-128.
[22] JI T, ZHENG D D, CHEN X F, et al. Effect of Prewetting Degree of Ceramsite on the Early-age Autogenous Shrinkage of Lightweight Aggregate Concrete[J]. Construction and Building Materials, 2015, 98: 102-111.
[23] 董淑慧,张宝生,葛 勇,等. 轻骨料性能对界面区微观结构的影响[J].沈阳建筑大学学报(自然科学版),2009,25(6):1120-1124.
[24] 张文之,刘 敏. 不同养护条件对大掺量粉煤灰混凝土抗碳化性能试验研究[J].硅酸盐通报,2017,36(8):2619-2624.
[25] 牛荻涛. 混凝土结构耐久性与寿命预测[M].北京:科学出版社,2003.

基金

中国博士后科学基金面上项目(2020M681974);安徽省高等学校自然科学研究重点项目(KJ2020A0297);安徽理工大学校级资助项目(QN2019115);安徽理工大学青年教师科学研究基金资助项目(13190022)

PDF(6608 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map