采用分级加卸载方式,利用五联流变实验系统对陕煤集团神木柠条塔矿业有限公司砂岩进行单轴蠕变试验。针对岩石蠕变的衰减、稳定和加速三阶段特征,将Burgers模型中串联的牛顿体的黏滞系数修正为与应力、时间相关的函数,考虑损伤在蠕变过程中的影响,基于损伤理论和Lemaitre应变等价性假说,建立损伤体模型。将Hooke体、Kelvin模型、修正牛顿体和损伤体四者串联组成一个新的非线性损伤蠕变模型,推导新模型的本构方程和蠕变方程,该模型以一个统一的函数描述岩石在不同应力水平下的蠕变曲线。基于单轴蠕变试验结果,对模型参数进行辨识和敏感性分析,将新模型与试验蠕变曲线对比。结果表明:模型能很好地拟合岩石蠕变,模型无须采用分段函数即可描述砂岩蠕变的全过程,弥补了Burgers模型无法描述加速蠕变的不足,从而验证新模型的合理性。
Abstract
Uniaxial creep experiments were conducted on sandstone samples obtained from Ningtiaota coal mine in Shaanxi using a five-connected rheological test system by which step loading and unloading were applied. In view of decaying, stable and accelerating stages within total creep, the Newton body in the Burgers constitutive model was modified by creating a new function with stress and time. In consideration of the effect of damage in the process of creep, a damage body was proposed based on the damage theory and Lemaitre's hypothesis. The Hooke body, Kelvin body, the modified Newton body, and the proposed damage body were combined to build a new nonlinear damage creep model and the constitutive model and creep function were also derived. The creep curves under various stress levels were described by the established nonlinear damage creep model. Moreover, parameters of the established damage model were fitted and the sensitivity of fitting parameters was analyzed according to the creep experimental data. Results suggest that the proposed damage model could well fit and describe the whole process of the creep of sandstone with no need of segmented functions, and hence overcoming the shortcoming of Burgers model in reflecting the accelerating creep stage.
关键词
砂岩 /
分级加卸载 /
修正牛顿体 /
损伤蠕变模型 /
全过程蠕变
Key words
sandstone /
step loading and unloading /
modified Newton body /
damage creep model /
total creep
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孙 钧. 岩石流变力学及其工程应用研究的若干进展[J].岩石力学与工程学报,2007,26(6):1081-1106.
[2] 徐卫亚, 杨圣奇, 褚卫江. 岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006, 26(3): 433-447.
[3] 刘晓燕, 刘路路, 闫坤伐. 冻结褐色泥岩非线性加速蠕变西原模型优化[J].raybet体育在线
院报,2017,34(12): 101-105.
[4] 张治亮, 徐卫亚, 王 伟. 向家坝水电站坝基挤压带岩石三轴蠕变试验及非线性黏弹塑性蠕变模型研究[J].岩石力学与工程学报,2011, 30(1): 132-140.
[5] 高春燕, 高全臣, 牛建广. 考虑加速蠕变的深井巷道粉砂岩非线性黏弹塑性蠕变模型研究[J].raybet体育在线
院报, 2016, 33(12): 99-104.
[6] 刘开云,薛永涛,周 辉. 参数非定常的软岩非线性黏弹塑性蠕变模型[J].中国矿业大学学报,2018, 47(4): 921-928.
[7] 赵延林, 曹 平, 文有道, 等. 岩石弹黏塑性流变试验和非线性流变模型研究[J].岩石力学与工程学报,2008, 27(3): 477-486.
[8] 韩 阳, 谭跃虎, 李二兵, 等. 岩石非定常Burgers蠕变模型及其参数识别[J].工程力学,2018, 35(3): 210-217.
[9] 张树光, 刘文博, 陈 雷, 等. 基于力学参数时效性的非定常蠕变模型[J].中国矿业大学学报,2019, 48(5): 993-1002.
[10] 杨圣奇, 徐 鹏. 一种新的岩石非线性流变损伤模型研究[J].岩土工程学报,2014, 36(10): 1846-1854.
[11] KANG J, ZHOU F, LIU C, et al. A Fractional Non-linear Creep Model for Coal Considering Damage Effect and Experimental Validation[J]. International Journal of Non-linear Mechanics, 2015, 76: 20-28.
[12] 蔡 煜, 曹 平. 基于Burgers模型考虑损伤的非定常岩石蠕变模型[J].岩土力学,2016, 37(增刊2): 369-374.
[13] 曹文贵, 袁靖周, 王江营, 等. 考虑加速蠕变的岩石蠕变过程损伤模拟方法[J].湖南大学学报(自然科学版),2013, 40(2): 15-20.
[14] 范庆忠, 高延法. 软岩蠕变特性及非线性模型研究[J].岩石力学与工程学报,2007, 26(2): 391-396.
[15] 刘新喜, 李盛南, 徐泽佩, 等. 高应力泥质粉砂岩黏弹塑性蠕变模型[J].中南大学学报(自然科学版),2019, 20(5): 1210-1220.
[16] 高赛红, 曹 平, 汪胜莲, 等. 改进的岩石非线性黏弹塑性蠕变模型及其硬化黏滞系数的修正[J].煤炭学报,2012, 37(6): 936-943.
[17] ZHOU H W, WANG C P, MISHNAEVSKY L, et al. A Fractional Derivative Approach to Full Creep Regions in Salt Rock[J]. Mechanics of Time-dependent Materials, 2013, 17(3): 413-425.
[18] 沈 为. 损伤力学[M]. 武汉: 华中理工大学出版社, 1995: 9-10.
[19] 范秋雁, 阳克青, 王渭明. 泥质软岩蠕变机制研究[J]. 岩石力学与工程学报,2010, 29(8): 1555-1561.
[20] 夏才初, 王晓东, 许崇帮, 等. 用统一流变力学模型理论辨识流变模型的方法和实例[J].岩石力学与工程学报,2008, 27(8): 1594-1600.
[21] 夏才初, 许崇帮, 王晓东, 等. 统一流变力学模型参数的确定方法[J].岩石力学与工程学报,2009,28(2): 425-432.
基金
国家自然科学基金项目(41572334,11572344);国家重点研发计划资助项目(2016YFC0600901);中央高校基本科研业务费专项(2010YL14)