非均质性对岩石宏观力学特性的影响机制

夏海城, 邬爱清, 卢波, 徐栋栋

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (3) : 103-109.

PDF(1914 KB)
PDF(1914 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (3) : 103-109. DOI: 10.11988/ckyyb.201914482021
岩土工程

非均质性对岩石宏观力学特性的影响机制

  • 夏海城, 邬爱清, 卢波, 徐栋栋
作者信息 +

Influence Mechanism of Heterogeneity on Mechanical Properties of Rock Materials

  • XIA Hai-cheng, WU Ai-qing, LU Bo, XU Dong-dong
Author information +
文章历史 +

摘要

岩石材料具有材料强度分布不均匀性和材料空间组构随机性的双重特性,从本质上看两种特性都属于岩石材料的非均质性,都对岩石力学性质有深刻影响。在以往的研究中,通常使用有限元法和Weibull分布函数模拟岩石材料强度的非均质特点,用变异系数定义非均质度的大小,得到非均质度与岩石强度力学特性之间的关系,缺少了对材料组构随机性的探索。使用DDA方法和正态分布函数建立非均质脆性岩石单轴压缩数值实验模型,研究了非均质度和材料组构对岩石强度的影响。研究结果表明:随着岩石非均质度的增大,岩石的极限承载力减小;岩石中两接触单元的弹性模量差异越大,应变差异越大,接触面成为易发生破坏的力学薄弱环节。在相同非均质度的岩石样本中,不同组构的样本力学薄弱环节分布不同,导致岩石破裂路径和力学特性也不相同。

Abstract

Rock materials are featured with nonuniform material strength distribution and random material space fabric, both, in essence, belong to the heterogeneity of rock materials, having a profound impact on the mechanical properties of rock. In previous studies, the heterogeneity of rock material strength was usually simulated using finite element method and Weibull distribution function, and the relationship between heterogeneity and rock strength mechanical properties was obtained by defining the degree of heterogeneity with the coefficient of variation, which lacks consideration of the randomness of material fabric. In this research, a numerical model for the uniaxial compression test on heterogeneous brittle rock was established using the DDA (Discontinuous Deformation Analysis) method and the normal distribution function. The effects of heterogeneity and material fabric on rock strength were examined. Results demonstrated that with the growth of rock heterogeneity, the ultimate bearing capacity of rock attenuated. The greater the difference of elastic modulus between two contact elements in rock, the greater the strain difference, and the weaker the mechanical properties of the contact surface. In rock samples of the same degree of heterogeneity, the distribution of the weak points differs with fabrics, resulting in different rock fracture paths and mechanical properties.

关键词

岩石力学 / 非均质度 / 材料组构 / 极限承载力 / 变异系数 / 正态分布

Key words

rock mechanics / heterogeneity / material fabric / ultimate bearing capacity / coefficient of variation / normal distribution

引用本文

导出引用
夏海城, 邬爱清, 卢波, 徐栋栋. 非均质性对岩石宏观力学特性的影响机制[J]. raybet体育在线 院报. 2021, 38(3): 103-109 https://doi.org/10.11988/ckyyb.201914482021
XIA Hai-cheng, WU Ai-qing, LU Bo, XU Dong-dong. Influence Mechanism of Heterogeneity on Mechanical Properties of Rock Materials[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(3): 103-109 https://doi.org/10.11988/ckyyb.201914482021
中图分类号: TU45   

参考文献

[1] 胡小荣, 唐春安. 岩土力学参数随机场的空间变异性分析及单元体力学参数赋值研究[J]. 岩石力学与工程学报, 2000, 19(1):59-63.
[2] 陈永强. 非均匀材料有效力学性能和破坏过程的数值模拟[D]. 北京:清华大学, 2001.
[3] 康 健, 毕秀国, 刘 超,等. 非均质随机分布对岩石热破裂影响的数值试验[J]. 岩土力学, 2008, 29(增刊1):495-498.
[4] 冯增朝, 赵阳升, 段康廉. 岩石的细胞元特性及其非均质分布对岩石全曲线性态的影响[J]. 岩石力学与工程学报, 2004, 23(11):1819-1823.
[5] 冯增朝, 赵阳升, 段康廉. 非均质细胞元随机分布对岩石峰前变形特性的影响[C]//中国岩石力学与工程学会第7次学术大会,西安:中国岩石力学与工程学会,2002:167-171.
[6] 张 征, 刘淑春, 鞠硕华. 岩土参数空间变异性分析原理与最优估计模型[J]. 岩土工程学报, 1996, 18(4):43-50.
[7] TANG Chun-an, KAISER P K. Numerical Simulation of Cumulative Damage and Seismic Energy Release during Brittle Rock Failure—Part Ⅰ: Fundamentals[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2): 113-121.
[8] 唐春安, 李连崇, 李常文, 等. 岩土工程稳定性分析RFPA强度折减法[J]. 岩石力学与工程学报, 2006, 25(8):1522-1530.
[9] KAISER P K, TANG Chun-an. Numerical Simulation of Damage Accumulation and Seismic Energy Release during Brittle Rock Failure—Part II: Rib Pillar Collapse[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(2): 123-134.
[10] 梁正召. 三维条件下的岩石破裂过程分析及其数值试验方法研究[D]. 沈阳:东北大学, 2005.
[11] 尤明庆,苏承东.岩石的非均质性与杨氏模量的确定方法[J].岩石力学与工程学报,2003,22(5):757-761.
[12] 罗 荣, 曾亚武, 曹 源, 等. 岩石非均质度对其力学性能的影响研究[J]. 岩土力学, 2012, 33(12):274-280.
[13] 罗 荣, 曾亚武, 杜 欣. 非均质岩石材料宏细观力学参数的关系研究[J]. 岩土工程学报, 2012, 34(12):2331-2336.
[14] 柯长仁, 蒋俊玲, 葛修润. 基于虚内键模型的非均质岩石破坏数值模拟[J]. 上海交通大学学报(自然科学版), 2012, 46(1): 142-145.
[15] CIL M B, BUSCARNERA G. DEM Assessment of Scaling Laws Capturing the Grain Size Dependence of Yielding in Granular Soils[J].Granular Matter, 2016, 18(3):36.
[16] SHI Gen-hua. Discontinuous Deformation Analysis: A New Numerical Model for the Statics and Dynamics of Block System [D]. Berkeley: Department of Civil Engineering, University of California, 1988.
[17] 杨懋偲. 基于DDA的数值试验方法研究及其应用[D].武汉:raybet体育在线 ,2018.

基金

国家重点研发计划项目(2018YFC0407002);国家自然科学基金项目(51879014);中央级公益性科研院所基本科研业务费项目(CKSF2017058/YT)

PDF(1914 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map