为探讨硫酸盐含量对全固废材料固化盐渍土抗压强度及微观结构的影响,采用击实试验和无侧限抗压强度试验,并结合扫描电镜、EDS、X射线衍射和热重分析等微观测试结果,从固化盐渍土的火山灰反应产物及其数量等角度分析含盐量对固化盐渍土抗压强度变化的影响。结果表明:硫酸盐含量低于2.7%时,固化盐渍土抗压强度随含盐量的增加呈先增大后减小,抗压强度峰值对应的含盐量为1.8%;固化盐渍土的火山灰反应产物主要为C-S-H和AFt,硫酸盐含量从0.3%增至1.8%时,反应产物明显增多,致使固化土抗压强度增大;但当硫酸盐含量从1.8%增至2.7%时,膨胀性AFt将试件内部孔隙完全填充并产生胀裂破坏,造成抗压强度降低。研究成果为全固废材料固化硫酸盐渍土的工程应用奠定了基础,对环境保护也有积极贡献。
Abstract
The aim of this study is to investigate the influence of sulfate content on compressive strength and microstructure of solidified saline soil with solid waste materials. The impact of salinity on compressive strength of solidified saline soil was examined from the viewpoint of pozzolanic products and quantities via compaction test and unconfined compressive strength test in association with scanning electron microscopy (SEM), energy dispersive spectrom(EDS), X-ray diffraction (XRD) and thermogravimetric analysis. Results demonstrated that when the content of sulfate was lower than 2.7%, the compressive strength of solidified saline soil increased at first and then decreased with the increase of salinity. When salinity was 1.8%, compressive strength reached peak value. The major pozzolanic products of solidified saline soil are C-S-H and AFt. When the content of sulfate augmented from 0.3% to 1.8%, the reaction products increased obviously, resulting in the rising of compressive strength of solidified soil; however, when the content of sulfate increased from 1.8% to 2.7%, the internal pores of the specimen were completely filled by expansive AFt, giving rise to cracks and the decline of compressive strength. The research findings laid a foundation for the engineering application of solidified sulphate saline soil.
关键词
固化盐渍土 /
全固废材料 /
硫酸盐含量 /
无侧向抗压强度 /
微观结构
Key words
solidified saline soil /
all-solid waste material /
sulfate content /
unconfined compressive strength /
microstructure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 汪为巍,杨保存,王 荣.南疆盐渍土地区城区道路病害规律研究[J].岩土工程学报,2013,35(增刊1):253-258.
[2] 杨晓明. 水泥处置高含盐量软土的微观试验和机理研究[D].上海:同济大学,2006.
[3] 储诚富, 刘松玉, 邓永锋, 等. 含盐量对水泥土强度影响的室内试验研究[J].工程地质学报,2007,15(1):139-143.
[4] 吕擎峰, 贾梦雪, 王生新, 等. 含盐量对固化硫酸盐渍土抗压强度的影响[J].中南大学学报(自然科学版),2018,49(3):718-724.
[5] LV Q, JIANG L, MA B, et al. A Study on the Effect of the Salt Content on the Solidification of Sulfate Saline Soil Solidified with an Alkali-Activated Geopolymer[J]. Construction and Building Materials, 2018, 176: 68-74.
[6] JTGE 51—2009, 公路工程无机结合料稳定材料试验规程[S]. 北京: 人民交通出版社, 2009.
[7] 孔凡龙, 刘 泽, 张俱嘉, 等. 矿渣-粉煤灰基地质聚合物性能与微观结构的研究[J].电子显微学报,2016,35(3):229-234.
[8] HORPIBULSUK S, PHETCHUAY C , CHINKULKIJNIWAT A, et al. Strength Development in Silty Clay Stabilized with Calcium Carbide Residue and Fly Ash[J]. Soils and Foundations, 2013, 53(4):477-486.
[9] 崔孝炜, 倪 文, 狄燕清. 钢渣矿渣基全固废胶凝材料的化学活化[J].硅酸盐通报,2018,37(4):1411-1417.
[10] 张文博, 徐以希, 周世腾, 等. Na2SO4激发低水胶比粉煤灰-水泥砂浆力学性能研究[J].硅酸盐通报,2019,38(8):2356-2361.
[11] 吕擎峰, 王子帅, 何俊峰, 等. 碱激发地聚物固化盐渍土微观结构研究[J].raybet体育在线
院报,2020,37(1):79-83.
[12] 贾梦雪. 含盐量对固化硫酸盐渍土强度特性的影响[D].兰州:兰州大学,2017.
[13] 刘诚斌, 纪洪广, 刘娟红, 等.矿渣复合胶凝材料固化滨海盐渍土的试验研究[J].建筑材料学报,2015,18(1):82-87.
[14] LEA F M.水泥和混凝土化学[M].唐明述,译.3版. 北京:中国建筑工业出版社,1980:682-754.
[15] 邱轶兵, 王庆平. Na2SO4激发粉煤灰火山灰活性研究[J].材料导报,2013,27(24):121-124.
[16] FRAIRE-LUNA P E, ESCALANTE-GARCIA J I, GOROKHOVSKY A. Composite Systems Fluorgypsum-Blastfurnance Slag-Metakaolin, Strength and Microstructures[J]. Cement and Concrete Research, 2006, 36(6):1048-1055.
[17] 崔孝炜, 倪 文, 任 超. 钢渣矿渣基全固废胶凝材料的水化反应机理[J].材料研究学报,2017,31(9):687-694.
[18] 黎良元, 石宗利, 艾永平. 石膏-矿渣胶凝材料的碱性激发作用[J].硅酸盐学报,2008,36(3):405-410.
[19] 杜延军, 刘松玉, 魏明俐, 等. 电石渣改良路基过湿土的微观机制研究[J]. 岩石力学与工程学报,2014,33(6):1278-1285.
基金
国家自然科学基金项目(51869031);“水利工程”重点学科研究项目(SLXK-YJS-2018-06)