为了研究砂岩的蠕变力学特性,采用RLW-2000型流变试验机进行三轴分级加卸载蠕变试验。通过黏弹塑性应变分离的方法,得到砂岩在不同偏应力水平下的瞬时弹性、瞬时塑性、黏弹性和黏塑性应变,并对黏弹塑性应变及弹性模量的变化规律进行探讨。试验结果表明:岩石蠕变为黏弹塑性变形过程,加载过程中表现有瞬时变形、衰减蠕变阶段和稳定蠕变阶段,卸载过程中表现出瞬时及滞后变形恢复现象;岩石初始蠕变速率与稳态蠕变速率比较可达2个数量级的差异,均随偏应力水平的提升而递增;岩石等时偏应力-应变关系表现出明显的非线性特征,曲线逐渐偏于应变轴,岩石蠕变变形同时具有线性和非线性特征。研究成果可为地下工程的长期稳定性研究提供一定参考。
Abstract
Triaxial loading and unloading creep tests were carried out on RLW-2000 rheological testing machine to study the creep mechanical properties of sandstone. The instantaneous elastic, instantaneous plastic, viscoelastic and viscoplastic strains of sandstone under different deviatoric stress levels were obtained via viscoelastic plastic strain separation, and the variation rules of viscoelastic plastic strain and elastic modulus were examined. The experimental results demonstrate that: 1) the creep of rock is a viscoelastic plastic deformation process consisting stages of instantaneous deformation, decaying creep and stable creep during loading, as well as instantaneous and lagged deformation recovery during unloading. (2) The difference between initial creep rate and steady creep rate of sandstone could reach two orders of magnitude, both growing with the climb of deviatoric stress level. (3) The isochronal deviatoric stress-strain relation of sandstone shows obvious nonlinear characteristics, and the curve gradually deviates from the strain axis. The creep deformation of rock has both linear and nonlinear characteristics. The research findings could offer reference for the study of long-term stability of underground engineering.
关键词
砂岩 /
加卸载蠕变 /
黏弹塑性 /
应变分离 /
弹性模量 /
隧道工程
Key words
sandstone /
loading and unloading creep /
viscoelastic plasticity /
strain separation /
elastic modulus /
tunnelling
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 于永江, 张 伟, 张国宁, 等. 富水软岩的蠕变特性实验及非线性剪切蠕变模型研究[J]. 煤炭学报, 2018, 43(6):1780-1788.
[2] 陈俊武. 复杂地质条件下粉砂质泥岩蠕变力学行为研究[J]. raybet体育在线
院报, 2018, 35(12):106-111.
[3] 刘虎虎, 缪海波, 陈志伟, 等. 三峡库区侏罗系顺层滑坡滑带土的剪切蠕变特性[J].岩土工程学报, 2019, 41(8):1573-1580.
[4] 张新岩. 基于围岩蠕变和注浆浆液硬化的盾构隧道力学特性研究[D]. 成都:西南交通大学, 2017.
[5] STEWART C M, GORDON A P, MA Y W, et al. An Anisotropic Tertiary Creep Damage Constitutive model for Anisotropic Materials[J]. International Journal of Pressure Vessels and Piping, 2011, 88(8/9):356-364.
[6] 张峰瑞, 姜谙男, 江宗斌, 等. 化学腐蚀-冻融综合作用下岩石损伤蠕变特性试验研究[J]. 岩土力学, 2019, 40(10):3879-3888.
[7] 汪妍妍,盛冬发.基于Burgers模型考虑损伤的岩石蠕变全过程研究[J].力学季刊,2019,40(1):143-148.
[8] 高文华, 刘 正, 刘 栋, 等. 分级加卸载下深部粉砂岩三轴蠕变特性试验研究[J]. 自然灾害学报, 2012, 21(5):127-134.
[9] 黄海峰. 红层泥岩的损伤和蠕变特性研究[D]. 成都:成都理工大学, 2018.
[10] 朱赛楠, 殷跃平, 李 滨. 二叠系炭质页岩软弱夹层剪切蠕变特性研究[J]. 岩土力学, 2019, 40(4):1377-1386.
[11] 闫云明,李恒乐,郭士礼.紫红色泥岩三轴蠕变力学特性试验研究[J].raybet体育在线
院报,2017,34(6):88-92.
[12] 张春阳, 曹 平, 汪亦显, 等. 自然与饱水状态下深部斜长角闪岩蠕变特性[J]. 中南大学学报(自然科学版), 2013, 44(4):1587-1595.
[13] 贺 其. 红砂岩单轴加卸载蠕变特性试验研究[D]. 南昌:东华理工大学,2016.
[14] STERPI D, GIODA G. Visco-plastic Behaviour around Advancing Tunnels in Squeezing Rock[J]. Rock Mechanics and Rock Engineering, 2009, 42(2): 319-339.
[15] 闫子舰, 夏才初, 李宏哲, 等. 分级卸荷条件下锦屏大理岩流变规律研究[J]. 岩石力学与工程学报, 2008,27(10):213-219.
基金
国家重点基础研究发展计划项目(2014CB046803)