基于贝叶斯框架下大坝服役性态综合评估方法

张涛, 苏怀智

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (2) : 32-38,45.

PDF(4404 KB)
PDF(4404 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (2) : 32-38,45. DOI: 10.11988/ckyyb.20191435
工程安全与灾害防治

基于贝叶斯框架下大坝服役性态综合评估方法

  • 张涛1,2, 苏怀智1,2
作者信息 +

A Comprehensive Evaluation Method for Dam Service Behavior Based on Bayesian Framework

  • ZHANG Tao1,2, SU Huai-zhi1,2
Author information +
文章历史 +

摘要

大坝服役性态的综合评估对水利枢纽的安全运行有重大意义。现有的评估模型存在过于依赖专家经验,缺乏客观性,或仅限于数据挖掘,未融入专业知识的不足。以贝叶斯网络为主要框架,提出了一种结合专家主观经验和客观实测数据的大坝性态评估方法。该方法根据朴素贝叶斯分类和BIC评分优化的方式确定网络结构,有效地厘清了影响因素之间的关系。利用模糊综合评价理论和熵权法分别求解先验分布和条件分布,运用贝叶斯估计进行推理,得到兼顾主观经验和客观数据的失效概率。结合失效概率等级表,对大坝服役性态进行有效的评估和定级。以某混凝土坝14个影响因素的时间序列为例,建立了该坝贝叶斯框架下多指标服役性态评估模型,并对其服役性态进行安全评级。最后从主观与客观、整体与部分、静态与动态3方面分析评估结果,证明了该方法的有效性。

Abstract

The comprehensive evaluation of dam service behavior is of great significance to the safe operation of water control project. Current evaluation models are too dependent on expert experience, hence lack of objectivity, or limited by data mining in the absence of professional knowledge. An assessment method for dam performance is presented based on Bayesian network combining the subjective experience of experts with the objective measured data. The relations among influencing factors are clarified effectively by determining the network structure according to naive Bayesian classification and BIC score optimization. Furthermore, the prior distribution and conditional distribution are solved by using the theory of fuzzy comprehensive evaluation and the method of entropy weight. The failure probability involving both subjective experience and objective data is obtained via reasoning through Bayesian estimation. The service behavior of dam thus can be assessed and rated according to the rating of failure probability. A multi-index evaluation model for the service behavior of dam under the Bayesian framework is established with the time series of 14 influencing factors of a concrete dam as a cases study. The safe service behavior of the dam is rated. The validity of the method is proved by analyzing the evaluation results from subjective and objective, holistic and partial, as well as static and dynamic perspectives.

关键词

大坝 / 性态评估 / 贝叶斯网络 / 模糊综合评价 / 熵权法 / 失效概率

Key words

dam / assessment of behavior / Bayesian network / fuzzy comprehensive evaluation / entropy weight method / failure probability

引用本文

导出引用
张涛, 苏怀智. 基于贝叶斯框架下大坝服役性态综合评估方法[J]. raybet体育在线 院报. 2021, 38(2): 32-38,45 https://doi.org/10.11988/ckyyb.20191435
ZHANG Tao, SU Huai-zhi. A Comprehensive Evaluation Method for Dam Service Behavior Based on Bayesian Framework[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(2): 32-38,45 https://doi.org/10.11988/ckyyb.20191435
中图分类号: TV698   

参考文献

[1] JIA J. A Technical Review of Hydro-project Development in China[J]. Engineering, 2016, 2(3): 302-312.
[2] 中华人民共和国水利部. 2016年全国水利发展统计公报[M]. 北京:中国水利水电出版社, 2017.
[3] 顾冲时, 苏怀智, 王少伟. 高混凝土坝长期变形特性计算模型及监控方法研究进展[J]. 水力发电学报, 2016, 35(5): 1-14.
[4] 顾冲时, 苏怀智, 刘何稚. 大坝服役风险分析与管理研究述评[J]. 水利学报, 2018, 49(1): 26-35.
[5] SU H Z, HU J, WU Z R. A Study of Safety Evaluation and Earlywarning Method for Dam Global Behavior[J]. Structural Health Monitoring, 2012, 11(3): 269-279.
[6] 李明超, 任秋兵, 沈 扬, 等. 贝叶斯框架下的大坝变形交互时变预测模型及其验证[J]. 水利学报, 2018, 49(11): 1328-1338.
[7] 吴中如. 水工建筑物安全监控理论及其应用[M]. 北京:高等教育出版社,2006.
[8] 苏怀智,王 锋,刘红萍.基于POT模型建立大坝服役性态预警指标[J].水利学报,2012,43(8):974-978.
[9] 王子敬.基于概率分布的大坝服役性态预警指标估计[J]. 水电能源科学, 2015, 33(10): 65-67.[10] SU H Z,WEN Z P, SUN X R, et al. Multisource Information Fusion-based Approach Diagnosing Structural Behavior of Dam Engineering[J]. Structural Control and Health Monitoring, 2018, 25(2): e2073.
[11] 胡 江, 苏怀智, 马福恒, 等. MF-DFA在大坝安全监测序列分析和整体性态识别中的应用[J]. 水利水电科技进展, 2014, 34(3): 50-55.
[12] 游 健. 基于改进遗传算法优化的大坝安全性态研究[J]. 人民黄河, 2016, 38(6): 129-133.
[13] 程江洲, 朱 偲, 付文龙. 基于贝叶斯网络的水力发电系统动态风险评估方法[J]. 水利学报, 2019, 50(5): 631-640.
[14] 刘 阳, 张建经, 李孟芳, 等. 基于模糊理论与SVM的边坡地震失稳规模贝叶斯网络评估方法[J]. 岩石力学与工程学报, 2019, 38(1): 2808-2015.
[15] 杨 咪, 屈文岗, 钱 会. 基于熵权的贝叶斯模型及其在水质评价中的应用[J]. 灌溉排水学报, 2018, 37(1): 85-90.
[16] 张连文, 郭海鹏. 贝叶斯网引论[M]. 北京:科学出版社, 2006: 31-74.
[17] 赵海超, 苏怀智,李家田,等. 基于多元联系数的水闸运行安全态势综合评判[J]. raybet体育在线 院报, 2019, 36(2): 39-45.
[18] SU H Z,WEN Z P, SUN X R, et al. Time-varying Identification Model for Dam Behavior Considering Structural Reinforcement[J]. Structural Safety, 2015, 57: 1-7.
[19] 赵二峰. 大坝安全的监测数据分析理论与评估方法[M]. 南京: 河海大学出版社, 2018: 62-78.
[20] 苏怀智,吴中如,顾冲时.大坝工作性态模糊可拓评估的基本原理[J]. 岩土力学,2006,27(11):1967-1973.
[21] SYKORA M, MARKOVA J, DIAMANTIDIS D. Bayesian Network Application for the Risk Assessment of Existing Energy Production Units[J]. Reliability Engineering & System Safety, 2018, 169(43): 312-320 .
[22] 张秋文, 章永志, 钟 鸣. 基于云模型的水库诱发地震风险多级模糊综合评价[J]. 水利学报, 2014, 45(1): 87-95.
[23] 谷艳昌, 王士军, 庞 琼. 基于风险管理的混凝土坝变形预警指标拟定研究[J]. 水利学报, 2017, 48(4): 480-487.

基金

国家自然科学基金项目(51979093,51739003);国家重点研发计划课题(2018YFC0407101)

PDF(4404 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map