为提供性能优异的抗冲磨混凝土配制方案,以单掺或复掺粉煤灰、矿渣粉、硅粉配制的C60抗冲磨混凝土为研究对象,通过平板法和圆环法对C60抗冲磨混凝土的抗裂性能进行研究。研究结果表明:①保持水胶比不变的情况下,掺入粉煤灰或矿渣粉均可降低混凝土的体积收缩变形、延长混凝土开裂时间;②随着粉煤灰或矿渣粉掺量的增加,抑制混凝土开裂的效果趋于明显;③ 掺入硅粉显著增加了混凝土的开裂趋势,且硅粉掺量由4%增至10%时混凝土开裂现象趋于严重;④硅粉与粉煤灰或者矿渣复掺后形成的协同互补效应可减小C60抗冲磨混凝土的开裂趋势,当复掺15%的粉煤灰与7%的硅粉时,抗裂效果最优。
Abstract
To offer superior mix proportion scheme for wear resistant concrete, we prepared C60 anti-wear concrete specimens by adding merely or mixed fly ash, slag powder and silica fume, and tested the crack resistance of the specimens using the plane method and the ring method. Research results demonstrate that: 1) when the water-to-binder ratio remains unchanged, the incorporation of fly ash or slag powder reduces the volumetric shrinkage deformation of concrete and prolongs the cracking time of concrete; 2) with the increase of fly ash or slag powder, the effect of restraining concrete cracking tends to be obvious; 3) the incorporation of silica fume evidently promotes the cracking of concrete, and such cracking gets more severe when the amount of silica fume increases, and the cracking of concrete tends to be serious; 4) the synergistic complementary effect formed by the fusion of silica fume and fly ash or slag powder reduces the cracking of C60 anti-wear concrete. The anti-cracking effect is optimal when 15% fly ash and 7% silica fume are compounded.
关键词
抗冲磨混凝土 /
C60 /
抗裂性能 /
粉煤灰 /
矿渣粉 /
硅粉
Key words
wear resistant concrete /
C60 /
anti-crack performance /
fly ash /
slag powder /
silica fume
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 袁 群,李晓旭,冯凌云,等.橡胶混凝土抗冲磨性能试验研究[J].raybet体育在线
院报,2018,35(7):124-130.
[2] 邓明枫,钟 强,张立勇,等.高性能混凝土抗冲磨性能试验研究[J].混凝土,2008(2) : 82-83,86.
[3] 余 舟,王 磊,杨华全.不同掺合料对水工混凝土抗冲磨性能的影响研究[J].混凝土,2019(6):96-99.
[4] JUSMES H,SELLEVOLD E J,LUNDEVALL G.High-strength Concrete Binders Part A: Reactivity and Composition of Cement Pastes with and without Condensed Silica Fume[C]// Proceedings of the Fourth International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete. Detroit: ACI Special Publication. Istanbul, Turkey. May 5-8, 1992: 873-889.
[5] 陈改新.高速水流下新型高抗冲耐磨材料的新进展[J].水力发电,2006,32(3):56-59.
[6] 张建峰.水工抗冲磨混凝土的抗裂性能研究[D].武汉:raybet体育在线
,2011.
[7] 高 浩,曾 力.复掺粉煤灰和硅粉抗冲磨混凝土配合比设计及抗裂性能[J].中国农村水利水电,2017(9):164-168,172.
[8] 祝小靓,蔡跃波,丁建彤.微膨胀抗冲磨混凝土抗裂性研究与进展[J].混凝土,2017(3) :134-137.
[9] 余 舟,王 磊,杨华全 ,等.中低热水泥混凝土抗冲耐磨及抗裂性能试验研究[J].人民长江,2018,49(增刊2):238-242.
[10] 张 波.不同形态硅灰在高强混凝土中的作用机理[D].北京:清华大学,2015.
基金
国家重点研发计划项目(2018YFC0406702)