江湖系统显式与隐式二维水动力模型比较

周立, 吴琼, 姚仕明, 胡德超

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (12) : 12-18.

PDF(2346 KB)
PDF(2346 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (12) : 12-18. DOI: 10.11988/ckyyb.20200892
河湖保护与治理

江湖系统显式与隐式二维水动力模型比较

  • 周立1, 吴琼1, 姚仕明2, 胡德超1
作者信息 +

Comparison between Explicit and Implicit Two-dimensional Hydrodynamic Models of River-Lake System

  • ZHOU Li1, WU Qiong1, YAO Shi-ming2, HU De-chao1
Author information +
文章历史 +

摘要

深入认识大型江湖系统水动力特性,需要使用平面二维数学模型代替传统一维数学模型开展模拟和研究。当以高分辨率计算网格作为前提时,大型江湖系统二维水动力模型“计算精度与效率”的矛盾则转化为计算效率瓶颈。以荆江-洞庭湖系统为背景(剖分为32.8万个四边形单元,最小网格尺度约50 m),选用MIKE21模型和一种半隐式欧拉-拉格朗日模型,开展大型江湖系统显式、隐式水动力模型性能的比较研究,探讨大型江湖系统高分辨率二维模型的可实用性。研究结果表明:显式模型稳定性较差,允许的最大时间步长为0.8 s;隐式模型稳定性好,时间步长可达60 s以上;在常规16核工作站的效率测试结果表明,显式模型具有良好的可并行性,加速比随核心数量基本呈现线性变化;隐式模型(使用预测-校正分块并行计算方法)亦可取得非常大的加速比,在16核心并行条件下加速比Sp可达11.1;模拟荆江-洞庭湖系统1年的非恒定流过程,显式、隐式模型的耗时分别为411、10.76 h(16核),后者计算效率是前者的38.2倍,可满足大型江湖系统整体高分辨率平面二维水动力模拟的实用性要求。

Abstract

To deeply understand the hydrodynamic characteristics of large-scale river-lake system, two-dimensional(2D) mathematical model instead of traditional one-dimensional(1D) model is required for simulation and research when calculation accuracy is given higher priority than calculation efficiency. With high-resolution grid as the premise, the contradiction between accuracy and efficiency of 2D hydrodynamic model turns into a bottleneck of calculation efficiency. With the Jingjiang-Dongting (JDT) system (divided into 328 000 quadrilateral cells with the minimum grid scale about 50 m) as research background, the performances of both explicit and implicit hydrodynamic models for large-scale river-lake system were compared using MIKE21 model and a semi-implicit Eulerian-Lagrangian model. The practicability of high-resolution 2D models of large-scale river-lake systems was also discussed. Results illustrated that explicit model is less stable (maximum allowable time step 0.8 s) than implicit model (time step reaching over 60 s). The efficiency test results on a conventional 16-core workstation revealed sound parallelism of explicit model, with the speedup ratio varying linearly with the number of cores. Implicit model (using the prediction-correction block parallel computing method) can also achieve a very large speedup ratio, amounting to 11.1 under 16-core parallel conditions. The explicit and implicit models took 411 and 10.76 hours (16 cores), respectively, to simulate the one-year unsteady flow in JDT system. The calculation efficiency of the latter is 38.2 times higher than that of the former. In conclusion, implicit model meets the practical requirements of high-resolution 2D hydrodynamic simulation for large-scale river-lake system.

关键词

大型江湖系统 / 高分辨率水动力模型 / 显式模型 / 隐式模型 / 计算效率比较

Key words

large-scale river and lake system / high-resolution hydrodynamic model / explicit model / implicit model / comparison of calculation efficiency

引用本文

导出引用
周立, 吴琼, 姚仕明, 胡德超. 江湖系统显式与隐式二维水动力模型比较[J]. raybet体育在线 院报. 2021, 38(12): 12-18 https://doi.org/10.11988/ckyyb.20200892
ZHOU Li, WU Qiong, YAO Shi-ming, HU De-chao. Comparison between Explicit and Implicit Two-dimensional Hydrodynamic Models of River-Lake System[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(12): 12-18 https://doi.org/10.11988/ckyyb.20200892
中图分类号: TV14   

参考文献

[1] 杨国录. 河流数学模型[M]. 北京: 海洋出版社, 1993.
[2] raybet体育在线 . 三峡建坝后荆江三口分水分沙及分流洪道冲淤计算分析[C]//长江三峡工程泥沙问题研究(第七卷). 北京:知识产权出版社, 2002:775-793.
[3] 中国水利水电科学研究院. 三峡建坝后荆江三口分流洪道河网冲淤计算[C]//长江三峡工程泥沙问题研究(第七卷). 北京:知识产权出版社, 2002:709-725.
[4] 李琳琳. 荆江-洞庭湖耦合系统水动力学研究[D]. 北京:清华大学, 2009.
[5] 张细兵. 江湖河网水沙运动数值模拟技术研究及应用[D]. 武汉:武汉大学, 2012.
[6] 谭维炎, 胡四一, 王银堂, 等. 长江中游洞庭湖防洪系统水流模拟:Ⅰ建模思路和基本算法[J]. 水科学进展, 1996(12): 336-334.
[7] 胡四一,施 勇,王银堂,等.长江中下游河湖洪水演进的数值模拟[J].水科学进展,2002,13(3): 278-286.
[8] 施 勇. 长江中下游水沙输运及其调控数学模型研究[D]. 南京:河海大学, 2006.
[9] CHEN Y C, WANG Z Y, LIU Z W, et al. 1D-2D Coupled Numerical Model for Shallow-Water Flows[J]. Journal of Hydraulic Engineering, 2012, 138(2): 122-132.
[10] YU K, CHEN Y C, ZHU D J, et al. Development and Performance of a 1D-2D Coupled Shallow Water Model for Large River and Lake Networks[J]. Journal of Hydraulic Research, 2019, 57: 852-865.
[11] XIA X L, LIANG Q H, MING X D. A Full-scale Fluvial Flood Modelling Framework Based on a High-performance Integrated Hydrodynamic Modelling System (HiPIMS)[J]. Advances in Water Resources, 2019, 132: 103392.
[12] ECHEVERRIBAR I, MORALES-HERNÁNDEZ M, BRUFAU P, et al. 2D Numerical Simulation of Unsteady Flows for Large Scale Floods Prediction in Real Time[J]. Advances in Water Resources, 2019, 134: 103444.
[13] SAWDEY A, O’KEEFE M, BLECK R, et al.“The Design, Implementation and Performance of a Parallel Ocean Circulation Model[J]//Proceedings of the 6th ECMWF Workshop on the Use of Parallel Processing in Meteorology. London, November 21-25, 1994: 523-548.
[14] CAI X, PEDERSEN G K, LANGTANGEN H P. A Parallel Multisubdomain Strategy for Solving Boussinesq Water Wave Equations[J]. Advances in Water Resources, 2005, 28(3): 215-233.
[15] DHI, MIKE 21: A 2D Modelling System for Estuaries, Coastal Water and Seas[K]. Denmark: DHI Water & Environment, 2014.
[16] HU D C, ZHONG D Y, ZHANG H W, et al. Prediction-Correction Method for Parallelizing Implicit 2D Hydrodynamic Models. I: Scheme[J]. Journal of Hydraulic Engineering, 2015, 141(8), doi: 10.1061/(ASCE)HY.1943-7900.0001012.
[17] HU D C, ZHONG D Y, ZHU Y H, et al. Prediction-Correction Method for Parallelizing Implicit 2D Hydrodynamic Models. II: Application[J]. Journal of Hydraulic Engineering, 2015, doi: 10.1061/(ASCE)HY.1943-7900.0001013.
[18] HU D C, YAO S M, DUAN C K, et al. Real-time Simulation of Hydrodynamic and Scalar Transport in Large River-Lake Systems[J]. Journal of Hydrology, 2020, 582: 124531.
[19] 李义天. 三峡水库下游一维数学模型计算成果比较[C]//长江三峡工程泥沙问题研究第七卷(1996—2000).北京:知识产权出版社, 2002:323-329.
[20] 白玉川, 万艳春, 黄本胜, 等. 河网非恒定流数值模拟的研究进展[J]. 水利学报, 2000(12): 43-47.
[21] 方春明, 鲁 文, 钟正琴. 可视化河网一维恒定水流泥沙数学模型[J]. 泥沙研究, 2003(6): 60-64.
[22] 黄国鲜. 长江中游复杂河网水动力模型的建立与应用[D]. 北京: 清华大学, 2008.

基金

国家自然科学基金项目(51779015);湖北省自然科学基金项目(2019CFB462)

PDF(2346 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map