液滴倾斜撞击液膜液冠演化规律

郭平措, 何小泷, 袁浩

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (11) : 86-93.

PDF(4898 KB)
PDF(4898 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (11) : 86-93. DOI: 10.11988/ckyyb.20200670
水力学

液滴倾斜撞击液膜液冠演化规律

  • 郭平措1, 何小泷2, 袁浩3
作者信息 +

Evolution of Liquid Crown During Oblique Droplet Impact on Liquid Film

  • GUO Ping-cuo1, HE Xiao-long2, YUAN Hao3
Author information +
文章历史 +

摘要

采用可调节表面张力的大密度比格子玻尔兹曼伪势模型模拟了液滴倾斜撞击液膜的过程,分析了不同雷诺数、韦伯数、液膜厚度和碰撞角对液冠演化的影响。结果表明: 碰撞时能量损失随着雷诺数增大而减小,但随着液膜厚度增大而增大;上下游液冠高度均随着雷诺数、韦伯数和碰撞角的增大而增大;同时上下游液冠高度随着液膜厚度的变化呈现先增大后减小的趋势,液膜厚度为0.25倍液滴半径时达到最大值。液冠延伸长度同样随着雷诺数和碰撞角增大而增大,但并不随着韦伯数的增大而变化,同时液冠延伸长度随着液膜厚度增加而减小。

Abstract

The process of droplets splashing on liquid film is simulated using a large-density lattice Boltzmann pseudo-potential model with tunable surface tension. The effects of Reynolds number, Weber number, liquid film thickness, and collision angle on the evolution of the liquid crown are analyzed. Results demonstrate that the energy loss during the impact decreases with the increase of Reynolds number, but augments with the thickening of liquid film; the upstream and downstream crown heights both rise with the increase of Reynolds number, Weber number, and collision angle, but reduce after increment with the change of film thickness, and peaks when liquid film thickness is 0.25 times of droplet radius. The crown extension length also increases with the growing of Reynolds number and collision angle, but does not vary with the increase of Weber number, and meanwhile shrinks with the thickening of liquid film.

关键词

格子玻尔兹曼方法 / 伪势模型 / 倾斜撞击 / 液冠演化 / 液冠飞溅

Key words

lattice Boltzmann method / pseudo-potential model / oblique impact / crown evolution / crown splashing

引用本文

导出引用
郭平措, 何小泷, 袁浩. 液滴倾斜撞击液膜液冠演化规律[J]. raybet体育在线 院报. 2021, 38(11): 86-93 https://doi.org/10.11988/ckyyb.20200670
GUO Ping-cuo, HE Xiao-long, YUAN Hao. Evolution of Liquid Crown During Oblique Droplet Impact on Liquid Film[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(11): 86-93 https://doi.org/10.11988/ckyyb.20200670
中图分类号: TV1   

参考文献

[1] COSSALI G E, MARENGO M, COGHE A,et al. The Role of Time in Single Drop Splash on Thin film[J]. Experiments in Fluids, 2004, 36(6):888-900.
[2] RIOBOO R, BAUTHIER C, CONTI J, et al. Experimental Investigation of Splash and Crown Formation During Single Drop Impact on Wetted Surfaces[J]. Experiments in Fluids, 2003, 35(6):648-652.
[3] JOSSERAND C,ZALESKI S. Droplet Splashing On a Thin Liquid Film[J]. Physics of Fluids,2003,15(6):1650.
[4] ZHANG H. A Studyof Different Fluid Droplets Impacting on a Liquid Film[J]. Petroleum Science,2008(1):64-68.
[5] YARIN A L, WEISS D A. Impact of Dropson Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity[J]. Journal of Fluid Mechanics, 1995, 283:141-173.
[6] GAO X, LI R. Impact of a Single Dropon a Flowing Liquid Film[J]. Physical Review E, 2015, 92(5):053005.
[7] ROISMAN I V, GAMBARYAN-ROISMAN T, KYRIOPOULOS O,et al. Breakup and Atomization of a Stretching Crown[J]. Physical Review E, 2007, 76(2): 026302.
[8] NIKOLOPOULOS N, THEODORAKAKOS A, BERGELES G. Three-dimensional Numerical Investigationof a Droplet Impinging Normally onto a Wall film[J]. Journal of Computational Physics, 2007, 225(1):322-341.
[9] LI Q, LUO K H, KANG Q J,et al. Lattice Boltzmann Methods for Multiphase Flow and Phase-Change Heat Transfer[J]. Progress in Energy and Combustion science, 2016, 52(2):62-105.
[10]LEE T, LIN C L. A Stable Discretizationof the Lattice Boltzmann Equation for Simulation of Incompressible Two-Phase Flows at High Density Ratio[J]. Journal of Computational Physics, 2005, 206(1):16-47.
[11]MUKHERJEE S, ABRAHAM J. Crown Behaviorin Drop Impact on Wet walls[J]. Physics of Fluids, 2007, 19(5):052103.
[12]CHENG M, LUO J. Lattice Boltzmann Simulationof a Drop Impact on a Moving Wall with a Liquid Film[J]. Computers & Mathematics with Applications, 2014, 67(2):307-317.
[13]HE X L, ZHANG J M, XU W L. Study of Cavitation Bubble Collapse Near a Rigid Boundarywith a Multi-Relaxation-Time Pseudo-potential Lattice Boltzmann Method[J]. AIP Advances, 2020, 10(3): 035315.
[14]KHARMIANI S F, PASSANDIDEH-FARD M, NIAZMAND H, et al. Simulation of a Single Droplet Impact onto a Thin Liquid Film Using the Lattice Boltzmann Method[J]. Journal of Molecular Liquids, 2016, 222, 1172-1182.
[15]YUAN H, LI J N, HE X L,et al. Study of Droplet Splashing On a Liquid Film With a Tunable Surface Tension Pseudopotential Lattice Boltzmann Method[J]. AIP Advances, 2020, 10: 025209.
[16]LI Q, LUO K H, KANG Q J, et al. Contact Angles in the Pseudopotential Lattice Boltzmann Modeling of Wetting[J]. Physical Review E Statistical, Nonlinear, and Soft Matter Physics, 2014, 90(5-1):053301.
[17]YU Z, FAN L S. Multirelaxation-time Interaction-Potential-based Lattice Boltzmann Model for Two-phase Flow[J]. Physical Review E Statistical, Nonlinear, and Soft Matter Physics, 2010, 82(4):046708.
[18]LI Q, LUO K H. Achieving Tunable Surface Tensionin the Pseudopotential Lattice Boltzmann Modeling of Multiphase Flows[J]. Physical Review E Statistical, Nonlinear, and Soft Matter Physics, 2013, 88(5):1-10.
[19]SHAN X W. Pressure Tensor Calculationin a Class of Nonideal Gas Lattice Boltzmann Models[J]. Physical Review E, 2008, 77(6):066702.
[20]YUAN P, SCHAEFER L. Equations of State in a Lattice Boltzmann Model[J]. Physics of Fluids, 2006, 18(4):042101.
[21]RAMAN K A, JAIMAN R K, LEE T S,et al. On the Dynamics of Crown Structure in Simultaneous Two Droplets Impact onto Stationary and Moving Liquid Film[J]. Computers & Fluids, 2015, 107:285-300.
[22]LI L, JIA X, LIU Y,et al. Simulation of Double Droplets Impact on Liquid Film by a Simplified Lattice Boltzmann Model[J]. Applied Thermal Engineering, 2015, 98:656-669.

基金

国家重点研发计划项目(2016YFC0402006);国家自然科学基金项目(51979183);贵州省交通运输厅科技项目(2018221007)

PDF(4898 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map