为提高堤防工程风险评价的准确性,提出了基于极限学习机的堤防工程多元风险指标评价方法。首先,综合考虑影响堤防风险的28个评价指标,利用层次分析法从预警系统、堤防工程系统、环境系统和社会经济系统这4个方面建立了堤防工程多元风险评价指标体系。接着,基于极限学习机算法对28个指标进行标准化处理及分级标准构建,以风险指标作为输入量,分级隶属度作为输出量,划分风险等级,量化评价指标,估计多元风险评价指标值和判断风险的严重程度。最后,依托鄱阳湖重点堤防——康山大堤,构建多元风险评价指标体系,运用极限学习机算法计算多元风险评价指标值。评价结果表明:康山大堤目前处于基本安全水平,符合康山大堤经过两次加固后的工程实际情况,并与其他方法进行对比,验证了提出方法的可靠性和有效性。该方法可拓展应用到其他重要水工结构工程风险评估中。
Abstract
To improve the accuracy of risk assessment for levee engineering, we present a multi-risk index evaluation approach for levee engineering based on extreme learning machine. First of all, 28 evaluation indices that affect the levee risk are comprehensively considered, and the analytic hierarchy process is adopted to establish a multi-risk index evaluation system which comprises of early warning system, levee engineering system, environmental system and social economic system. Subsequently, the extreme learning machine algorithm is employed for standardized processing of the 28 indices and constructing grading standards. With the risk indices and the grading membership as the input and output, respectively, the risk levels are divided, the evaluation indices are quantified, the values of multiple risk evaluation indices are estimated, and the risk severity is judged. With Kangshan levee, a key levee of Poyang Lake, as a case study, the present multi-risk evaluation index system is established and the values of multi-risk evaluation indices are computed using the extreme learning machine algorithm. The evaluation results demonstrate that the Kangshan levee is safe in general, which is in line with the actual situation of the Kangshan levee after two reinforcements. The reliability and effectiveness of the proposed method is verified by comparison with other methods. The proposed approach is expected to be applied to the risk assessment of other important hydraulic structures.
关键词
堤防工程 /
风险评价 /
层次分析法 /
极限学习机 /
多元指标体系
Key words
levee engineering /
risk assessment /
analytic hierarchy process /
extreme learning machine /
multi-index system
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 黄锦林,杨光华,王 盛.堤防工程安全综合评价方法[J]. 南水北调与水利科技,2015,13(5):1011-1015.
[2] 杨端阳,王超杰,郭成超,等.堤防工程风险分析理论方法综述[J].raybet体育在线
院报,2019,36(10):59-65.
[3] 杨子桐,黄显峰,方国华,等.基于云模型的堤防工程风险评价方法与应用[J].武汉大学学报(工学版),2019,52(7): 572-580.
[4] 焦小超.基于脆弱性曲线方法的堤防工程风险评价研究[D].北京:中国水利水电科学研究院,2016.
[5] 庞金龙.宁夏黄河堤防风险分析及洪水影响评估[D].天津:天津大学,2016.
[6] 李 锋,李宗坤.基于未确知网络分析法的堤防工程风险分析研究[J].raybet体育在线
院报,2012,29(7):35-40.
[7] 李铁峰.辽河干流康平段堤防安全综合评价[J].黑龙江水利科技,2020,48(4):200-204.
[8] 康业渊,苏怀智,马文丽.基于遗传-层次分析法的堤防安全综合评价[J].人民黄河,2014,36(2): 9-12,19.
[9] 冯 峰,倪广恒,何宏谋.基于逆向扩散和分层赋权的黄河堤防工程安全评价[J].水利学报,2014,45(9):1048-1056.
[10]NIU Z G, YOU R, LU J. The Dike Stability Analysis Based on Strength Reduction Method[J]. Procedia Engineering, 2012, 28: 560-563.
[11]VOROGUSHYN S, MERZ B, APEL H. Development of Dike Fragility Curves for Piping and Micro-instability Breach Mechanisms[J]. Natural Hazards and Earth System Sciences, 2009, 9(4): 1383-1401.
[12]SU H Z, QIN P, QIN Z H. A Method for Evaluating Sea Dike Safety[J]. Water Resources Management, 2013, 27(15): 5157-5170.
[13]CHEN X C, HUANG D, CHEN X H, et al. Risk Assessment for Dangerous Sections of the Levees: A Case Study in Guangdong Province, China[J]. Ocean & Coastal Management, 2019, 185: 105061.
[14]XIA F Q, WU S H, YANG Q Y, et al. Dike Breach Risks of Different Flood Conditions in the Lower Yellow River[J]. Chinese Journal of Population Resources & Environment, 2010, 8(1):18-27.
[15]崔东文.基于极限学习机的长江流域水资源开发利用综合评价[J].水利水电科技进展,2013,33(2):14-19.
[16]HUANG G B, ZHU Q Y, SIEW C K. Extreme Learning Machine: Theory and Applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.
[17]丁 丽.堤防工程风险评价方法研究[D].南京:河海大学, 2006.
[18]黄中发,黄浩智,蒋水华,等.堤防工程系统风险因子量化及风险评价[J].自然灾害学报,2018,27(4):171-177.
[19]GB 50286—2013,堤防工程设计规范[S].北京:中国计划出版社,2013.
[20]江西省水利规划设计院.江西省鄱阳湖蓄滞洪区安全建设工程可行性研究报告[R].南昌:江西省水利厅,2014.
[21]宋永东,苏立君,张崇磊,等.基于极限学习机的边坡可靠度分析[J].raybet体育在线
院报,2018,35(8):78-83.
[22]魏 洁.深度极限学习机的研究与应用[D].太原:太原理工大学,2016.
[23]陈 红.堤防工程安全评价方法研究[D].南京:河海大学, 2004.
[24]刘亚莲,周翠英.堤坝失事风险的突变评价方法及其应用[J].水利水电科技进展,2010,30(5):5-8.
基金
国家重点研发计划重点专项(2016YFC0402500);国家自然科学基金项目(41867036);江西省自然科学基金项目(2018ACB21017);江西省水利厅科技项目(202022YBKT03,202123YBKT12,KT201534)