针对植被防护堆积体侵蚀动力机制的问题,通过野外模拟降雨试验,分析直根系和须根系植被对堆积体径流流速、水力和水动力参数的影响。结果表明:植被削减堆积体平均侵蚀速率达88.34%~92.88%,直根系消减平均流速效益为50.51%,须根系为21.32%~35.61%;裸坡和植被堆积体径流流型均属于层流(雷诺数<40),裸坡径流在降雨强度≤1.2 mm/min时处于急流态,直根系堆积体均处于缓流态,须根系堆积体在急流态和缓流态间变化。直根系对坡面径流的阻滞作用大于须根系;植被防护下堆积体侵蚀速率、水力和水动力参数与裸坡呈显著性差异(P<0.05),径流剪切力和径流功率可用于较好地刻画坡面侵蚀动态过程,呈显著线性关系(R2为0.63~0.96)。研究成果可为生产建设项目工程堆积体水土流失量预测模型的植被因子修订提供科学依据。
Abstract
To obtain the erosion dynamic mechanism of spoil heaps, we examined the effects of taproot system (Artemisia gmelinii) and fibrous root system (Medicago sativa and Cynodon dactylon) vegetation on the runoff velocity, hydraulic parameters, and hydrodynamic parameters of the spoil heaps through artificial rainfall simulation experiment. Results demonstrated that vegetation reduced the average soil loss rate of spoil heaps by 88.34%-92.88%, as compared with bare spoil heaps. Average runoff velocity decreased by 50.51% under taproot system vegetation, and 21.32%-35.61% under fibrous root system vegetation. Both the runoff patterns of bare and vegetated spoil heaps were laminar (Reynolds Number <40). Runoff flow of bare spoil heaps was rapid when rainfall intensity was not greater than 1.2 mm/min; however, under the protection of taproot system vegetation, the runoff flow was slow, while under fibrous root system vegetation, the runoff flow pattern varied between rapid and slow regimes. Taproot system vegetation had a greater retardation effect on runoff resistance coefficient than fibrous root system. The flow shear stress and stream power could better describe the dynamic process of erosion on the spoil heaps under vegetation protection, showing a significant linear relationship (R2 was 0.63-0.96). Our findings offer scientific basis for revising the vegetation factors in the establishment of soil and water prediction model suitable for production and construction projects.
关键词
堆积体 /
径流特性 /
降雨试验 /
流速 /
侵蚀动力 /
植被类型
Key words
spoil heaps /
runoff characteristics /
rainfall experiment /
runoff velocity /
erosion dynamics /
vegetation type
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 史志华,刘前进,张含玉,等.近十年土壤侵蚀与水土保持研究进展与展望[J].土壤学报,2020,57(5):1117-1127.
[2] 孙厚才.生产建设项目水土保持方案20年回顾与展望[J].raybet体育在线
院报,2018,35(9):1-5.
[3] 李建明,王志刚,张长伟,等.生产建设项目弃土弃渣特性及资源化利用潜力评价[J].水土保持学报,2020,34(2):1-8.
[4] 李建明,王志刚,王一峰,等.基于固体废弃物资源化利用的“无废城市”建设初探[J].中国水土保持,2019(7):25-29.
[5] 常 鸣,窦向阳,唐 川,等.降雨驱动泥石流危险性评价[J].地球科学,2019,44(8):2794-2802.
[6] 郭子正,殷坤龙,刘庆丽,等.基于位移比模型的三峡库区云阳县域内蠕变型滑坡降雨预警[J].地球科学,2020,45(2):672-684.
[7] 张冠华,程冬兵,张平仓,等.工程开挖面水土流失特征试验研究[J].raybet体育在线
院报,2015,32(3):27-30.
[8] 张平仓,周 若,程冬兵,等.工程开挖面特征及土壤流失量快速监测方法探[J].raybet体育在线
院报,2013,30(9):22-26.
[9] 李建明,牛 俊,王文龙,等.不同土质工程堆积体径流产沙差异[J].农业工程学报,2016,32(14):187-194.
[10] 史东梅,蒋光毅,彭旭东,等.不同土石比的工程堆积体边坡径流侵蚀过程[J].农业工程学报,2015,31(17):152-161.
[11] 李玉亭婷,高照良,李永红,等.坡长对黄土区工程堆积体产流产沙影响的模拟试验研究[J].水土保持通报,2019,39(4):102-106.
[12] 李建明,王文龙,黄鹏飞,等.黄土区生产建设工程堆积体石砾对侵蚀产沙影响[J].泥沙研究,2014(4):10-17.
[13] LI J M, WANG W L, GUO M M, et al. Effects of Soil Texture and Gravel Content on the Infiltration and Soil Loss of Spoil Heaps under Simulated Rainfall[J]. Journal of Soils and Sediments, 2020, 20: 3896-3908.
[14] LV J R, LUO H, XIE Y S. Effects of Rock Fragment Content, Size and Cover on Soil Erosion Dynamics of Spoil Heaps Through Multiple Rainfall Events[J]. Catena, 2019, 172: 179-189.
[15] SL 773—2018,生产建设项目土壤流失量测算导则[S]. 北京:中国水利水电出版社,2018.
[16] 陈 兰,周鸿基,刘纪根,等.输油管道工程特征及其水土流失防治措施:以平原区和丘陵区为例[J].raybet体育在线
院报,2015,32(3):15-19.
[17] VANNOPPEN W, DE BAETS S, KEEBLE J, et al. How Do Root and Soil Characteristics Affect the Erosion-Reducing Potential of Plant Species?[J]. Ecological Engineering, 2017, 109: 186-195.
[18] 潘成忠,上官周平.不同坡度草地含沙水流水力学特性及其拦沙机理[J].水科学进展,2007,18(4):490-495.
[19] CHEN H, ZHANG X P, ABLA M, et al. Effects of Vegetation and Rainfall Types on Surface Runoff and Soil Erosion on Steep Slopes on the Loess Plateau, China[J]. Catena, 2018, 170: 141-149.
[20] 史倩华,王文龙,刘瑞顺,等.植被恢复措施对不同排土年限煤矿排土场边坡细沟侵蚀的影响[J].农业工程学报,2016,32(17):226-232.
[21] 李永红,牛耀彬,王正中,等.工程堆积体坡面径流水动力学参数及其相互关系[J].农业工程学报, 2015,31(22):83-88.
[22] 牛耀彬,高照良,李永红,等.工程堆积体坡面细沟形态发育及其与产流产沙量的关系[J].农业工程学报, 2016,32(19):154-161.
[23] WANG L H, DALABAY N, LU P, et al. Effects of Tillage Practices and Slope on Runoff and Erosion of Soil from the Loess Plateau, China, Subjected to Simulated Rainfall[J]. Soil & Tillage Research,2017, 166: 147-156.
[24] 沙际德,白清俊.粘性土坡面细沟流的水力特性试验研究[J].泥沙研究,2001(6):39-44.
[25] 李建明,孙 蓓,王一峰,等.矿区3种弃土弃渣体侵蚀及水动力学差异研究[J].raybet体育在线
院报,2017,34(10):24-30.
[26] FOSTER G R,HUGGINS L F,MEYER L D. Laboratory Study of Rill Hydraulics(II). Shear Stress Relationships[J]. Transactions of the Chinese Society of Agricultural Engineering,1984, 27(3): 797-804.
[27] GOVERS G, GIMENEZ R, OOST K V. Rill Erosion: Exploring the Relationship Between Experiments, Modelling and Field Observations[J]. Earth-Science Reviews, 2007, 84: 87-102.
[28] BAGNOLD R. An Approach to the Sediment Transport Problem from General Physics[M]. Washington: United States Government Printing Office, 1966.
基金
国家自然科学基金项目(41701316,41877082,42077062);raybet体育在线
中央级公益性科研院所基本科研业务费项目(CKSF2021447/TB,CKSF2021487/TB,CKSF2019170/TB);国家电网公司总部科技项目(52130421000L)