雨洪水回灌过程中多分散颗粒造成的堵塞问题实质上是多孔介质中颗粒的运移和沉积。为了揭示饱和多孔介质中多分散颗粒的沉积特性,开展了5种不同浓度条件下多分散雨洪颗粒(0.375~55.82 μm)人工回灌一维砂柱定流量试验,基于胶体过滤理论,建立多分散颗粒运移-沉积的改进模型并进行相应的数值模拟。物理试验和数值模拟结果表明:不同浓度条件下多分散颗粒的沉积剖面都符合“上陡峭,下平缓”的超指数分布,而不是常规模型预测的指数分布。超指数分布是多分散颗粒的非均等沉积造成的,常规模型均化了沉积颗粒的空间分布,Kozeny-Carman模型可以模拟颗粒的非均等沉积造成介质不同位置渗透性能降低,介质的堵塞程度与颗粒大小直接相关,介质渗透性能最大降低为原来的52%,雨洪水中粒径>2.26 μm颗粒的沉积是造成堵塞的主要原因。
Abstract
The blockage caused by polydisperse particles in the process of stormwater recharge is in essence the transport and deposition of particles in porous media. To find deposition feature of polydisperse particles, a one-dimensional sand column test for artificial recharge is carried out to observe the outflow and inflow concentration of polydisperse particles ranging from 0.375 to 55.82 μm at five injection concentrations. A modified model in consideration of the particle polydispersity is theoretically derived based on the colloid filtration theory (CFT). Both the experimental and simulation results show the retention profiles of five concentrations compile with the hyper-exponential law, rather than the exponential retention predicted by the conventional model. The highly hyper-exponential retention profiles are caused by non-uniform deposition of polydisperse particles; and, the conventional model is found to homogenize the spatial distribution of retention of polydisperse particles. Local and overall permeability reductions are assessed by the Kozeny-Carman model. The blockage degree of media is directly relevant to particle size. The permeability of the medium is reduced to 52%, and the deposition of particles larger than 2.26 μm in the stormwater is the main cause of blockage.
关键词
雨洪水回灌 /
多分散颗粒 /
过滤系数 /
超指数分布 /
Kozeny-Carman模型
Key words
stormwater recharge /
polydisperse particles /
filter coefficient /
hyper-exponential retention /
Kozeny-Carman model
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] CHANG N B, LU J W, CHUI T F M, et al. Global Policy Analysis of Low Impact Development for Stormwater Management in Urban Regions[J]. Land Use Policy, 2018, 70: 368-383.
[2] 王 浩, 梅 超, 刘家宏. 海绵城市系统构建模式[J]. 水利学报,2017, 48(9): 1009-1014.
[3] 张建云, 王银堂, 胡庆芳, 等. 海绵城市建设有关问题讨论[J]. 水科学进展,2016, 27(6):793-799.
[4] ABDEL M N, KAMEL H. Purification of Stormwater Using Sand Filter[J]. Journal of Water Resource and Protection,2013, 5(11): 1007-1012.
[5] SANSALONE J, KUANG X, YING G, et al. Filtration and Clogging of Permeable Pavement Loaded by Urban Drainage[J]. Water Research, 2012, 46(20): 6763-6774.
[6] 王兴超. 基于海绵城市理论的地下水库工程设计[J]. raybet体育在线
院报, 2018, 35(8): 34-39.
[7] KANDRA H S, MCCARTHY D, FLETCHER T D, et al. Assessment of Clogging Phenomena in Granular Filter Media Used for Stormwater Treatment[J]. Journal of Hydrology, 2014, 512: 518-527.
[8] AL-ISAWI R, SCHOLZ M, WANG Y, et al. Clogging of Vertical-flow Constructed Wetlands Treating Urban Wastewater Contaminated with a Diesel Spill[J]. Environmental Science and Pollution Research, 2015, 22(17): 12779-12803.
[9] 张家发, 吴庆华, 朱国胜. 海绵城市入渗设施淤堵研究进展及长期性能改进方案探讨[J]. raybet体育在线
院报, 2016, 33(12): 78-85.
[10] DECHESNE M, BARRAUD S, BARDIN J P. Indicators for Hydraulic and Pollution Retention Assessment of Stormwater Infiltration Basins[J]. Journal of Environmental Management, 2004, 71(4): 371-380.
[11] YANG M, LU M, BIAN H, et al. Effects pf Clogging on Hydraulic Behavior in a Vertical-Flow Constructed Wetland System: A Modelling Approach[J]. Ecological Engineering, 2017, 109: 41-47.
[12] YONG C F, MCCARTHY D T, DELETIC A. Predicting Physical Clogging of Porous and Permeable Pavements[J]. Journal of Hydrology, 2013, 481: 48-55.
[13] REDDI L N, MING X, HAJRA M G, et al. Permeability Reduction of Soil Filters Due to Physical Clogging[J]. Journal of Geotechnical and Geo-environmental Engineering, 2000, 126(3): 236-246.
[14] AHFIR N D, HAMMADI A, ALEM A, et al. Porous Media Grain Size Distribution and Hydrodynamic Forces Effects on Transport and Deposition of Suspended Particles[J]. Journal of Environmental Sciences, 2017, 53(3): 161-172.
[15] SIRIWARDENE N R, DELETIC A, FLETCHER T D. Clogging of Stormwater Gravel Infiltration Systems and Filters: Insights from a Laboratory Study[J]. Water Research, 2007, 41(7): 1433-1440.
[16] ZAMANI A, MAINI B. Flow of Dispersed Particles Through Porous Media-Deep Bed Filtration[J]. Journal of Petroleum Science and Engineering, 2009, 69(1-2): 71-88.
[17] JOHNSON W P, HILPERT M. Upscaling Colloid Transport and Retention under Unfavorable Conditions: Linking Mass Transfer to Pore and Grain Topology[J]. Water Resources Research, 2013, 49(9): 5328-5341.
[18] MESSINA F, MARCHISIO D L, SETHI R. An Extended and Total Flux Normalized Correlation Equation for Predicting Single-collector Efficiency[J]. Journal of Colloid and Interface Science, 2015, 446: 185-193.
[19] 刘泉声, 崔先泽, 张程远. 多孔介质中悬浮颗粒迁移-沉积特性研究进展[J]. 岩石力学与工程学报,2015, 34(12): 2410-2427.
[20] TIEN C. Granular Filtration of Aerosols and Hydrosols: Butterworths Series in Chemical Engineering[M]. Butterworth-Heinemann, 2013. doi: 10.1016/B978-0- 409-90043-9.50007-1.
[21] ZOU Z,SHU L,MIN X,et al.Physical Experiment and Modeling of the Transport and Deposition of Polydisperse Particles in Stormwater: Effects of a Depth-Dependent Initial Filter Coefficient[J].Water,2019,11(9): 1885-1904.
[22] TONG M, JOHNSON W P. Colloid Population Heterogeneity Drives Hyper-exponential Deviation from Classic Filtration Theory[J]. Environmental Science & Technology, 2007, 41(2): 493-499.
[23] ALEM A, AHFIR N D, ELKAWAFI A, et al. Hydraulic Operating Conditions and Particle Concentration Effects on Physical Clogging of a Porous Medium[J]. Transport in Porous Media, 2015, 106(2): 303-321.
[24] JEGATHEESAN V, VIGNESWARAN S. Transient Stage Deposition of Submicron Particles in Deep Bed Filtration under Unfavorable Conditions[J]. Water Research, 2000, 34(7): 2119-2131.
[25] AHFIR N D,BENAMAR A,ALEM A,et al. Influence of Internal Structure and Medium Length on Transport and Deposition of Suspended Particles: A Laboratory Study[J]. Transport in Porous Media,2009,76(2):289-307.
[26] JOHNSON W P, RASMUSON A, PAZMIO E, et al. Why Variant Colloid Transport Behaviors Emerge among Identical Individuals in Porous Media when Colloid–Surface Repulsion Exists[J]. Environmental Science & Technology, 2018, 52(13): 7230-7239.
[27] XU S, GAO B, SAIERS J E. Straining of Colloidal Particles in Saturated Porous Media[J]. Water Resources Research, 2006, 42(12), doi: 10.1029/2006WR004948.
[28] 王子佳. 城市雨洪水地下回灌过程中悬浮物堵塞规律的实验研究[D]. 长春:吉林大学,2012.
[29] 赵 军, 刘泉声, 张程远. 水源热泵回灌困难颗粒阻塞试验研究[J]. 岩石力学与工程学报,2012, 31(3): 604-609.
基金
国家自然科学基金委员会—中华人民共和国水利部—中国长江三峡集团有限公司长江水科学研究联合基金项目(U2040213);中央级公益性科研院所基本科研业务费项目(CKSF2021452/NY)