橡胶颗粒-黏土的剪切及固结试验研究

李珊珊, 李大勇

raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (1) : 95-102.

PDF(3201 KB)
PDF(3201 KB)
raybet体育在线 院报 ›› 2021, Vol. 38 ›› Issue (1) : 95-102. DOI: 10.11988/ckyyb.20191171
岩土工程

橡胶颗粒-黏土的剪切及固结试验研究

  • 李珊珊1, 李大勇2,3
作者信息 +

Tests on Shear and Consolidation Properties of Clay Mixed with Rubber Crumbs

  • LI Shan-shan1, LI Da-yong2,3
Author information +
文章历史 +

摘要

近年来废旧轮胎橡胶颗粒与素土混合成轻质土逐渐被用于土工构筑物、路基及挡土墙回填、草坪工程等领域。针对不同橡胶颗粒掺量下橡胶-黏土,采用Shear Trac-Ⅱ剪切仪探讨其在不同竖向压力、剪切速率及橡胶颗粒掺量下的抗剪强度、变形特性,并通过一维固结试验探讨橡胶颗粒-黏土的固结特性。结果表明:黏土的剪切强度随竖向压力、橡胶颗粒掺量增加而增大,但随剪切速率增大而减小,而且剪切速率越大、竖向压力越低越容易发生剪胀变形。随剪切次数增加,橡胶颗粒-黏土的剪切强度达到峰值后出现应变软化现象,最终降至稳定的残余强度,其峰值强度、残余强度较纯黏土分别提高20%和10%,残余内摩擦角较峰值内摩擦角约减小10%,残余黏聚力较峰值黏聚力约降低60%;但达到残余强度所需累计剪切位移随橡胶颗粒掺量增加逐渐增大;此外,相同竖向压力下橡胶颗粒-黏土较黏土的固结时间是黏土固体时间的1/4。试验结果可为改良后黏土用作回填材料、土工构筑物、草坪工程及基础回填等工程提供科学依据。

Abstract

In recent years, lightweight soil composed of scrap tire crumbs and plain soil is applied as the backfill soil for geotechnical structures, subgrades and retaining walls, lawn engineering and other fields. The shear strength and deformation characteristics of rubber-clay mixtures were investigated with ShearTrac-Ⅱ apparatus, with varying shear rate, consolidation pressure and tire crumbs content into account. Moreover, the consolidation characteristics of mixtures were analyzed via one-dimensional consolidation test. Test results indicated that the shear strength of mixtures can be improved by increasing rubber content and consolidation pressure. However, increasing the shear rate would result in the deterioration of shear strength, the larger the shear rate, the lower the consolidation pressure, the more likely of shear dilatancy. As the shearing proceeds, the shear strength of rubber-clay mixture reached peak, displaying strain softening feature, and then declined until reaching a stable residual strength. Compared with those of clay, the peak strength and residual strength of rubber-clay mixture improved by 20% and 10%, respectively; residual internal friction angle reduced by 10% compared with peak internal friction angle; and residual cohesion by 60%. The cumulative shear displacement which is required for reaching residual strength augmented gradually with the increasing of rubber content. In addition, under the same vertical pressure, the consolidation time of rubber-clay mixture shortens by four times compared with that of clay.

关键词

废旧轮胎橡胶颗粒 / 橡胶颗粒掺量 / 黏土 / 剪切强度 / 固结系数

Key words

scrap tire crumbs / content of tire crumb / clay / shear strength / coefficient of consolidation

引用本文

导出引用
李珊珊, 李大勇. 橡胶颗粒-黏土的剪切及固结试验研究[J]. raybet体育在线 院报. 2021, 38(1): 95-102 https://doi.org/10.11988/ckyyb.20191171
LI Shan-shan, LI Da-yong. Tests on Shear and Consolidation Properties of Clay Mixed with Rubber Crumbs[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(1): 95-102 https://doi.org/10.11988/ckyyb.20191171
中图分类号: P642.16    TU47   

参考文献

[1] FALAK O A,MOHAMMED O A,RAGHAD O A,et al. Improvement of Soil by Waste Tires Addition[J]. Engineering and Technology Journal,2011,29(16):3417-3428.
[2] PIERCE C E, BLACKWELL M C. Potential of Scrap Tire Rubber as Lightweight Aggregate in Flowable Fill[J]. Waste Management, 2003, 23(3): 197-208.
[3] 刘景洋, 乔 琦, 昌 亮, 等. 轮胎使用年限及我国轮胎报废量预测研究[J]. 中国资源综合利用, 2011, 29(10): 34-37.
[4] PETER J B, TUNCER B E. Design of Highway Embankments Using Tire Chips[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(4): 295-304.
[5] CARLOS H S, PABLO P M, ELLAS M P, et al. Characterisation of an Unbound Granular Mixture with Waste Tyre Rubber for Subballast Layers[J]. Materials and Structures, 2015, 48(12): 3847-3861.
[6] ADALIER K, PAMUK A. On the Important Mechanical Properties of Rubber-Sand[J]. Advanced Materials Research, 2013, 685: 8-14.
[7] KIM Y T, KANG H S. Engineering Characteristics of Rubber-added Lightweight Soil as a Flowable Backfill Material[J]. Journal of Materials in Civil Engineering, 2011, 23(9): 1289-1294.
[8] YOUWAI S, BERGADO D T. Numerical Analysis of Reinforced Wall Using Rubber Tire Chips-Sand Mixtures as Backfill Material[J]. Computers and Geotechnics, 2004, 31(2): 103-114.
[9] HUMPHREY D N. Tire Derived Aggregate as Lightweight Fill for Embankments and Retaining Walls[C]//HAZARIKA H, YASUHARA K. Project Interior Workshop on Scrap Tire-Derived Geomaterials. Oxford, UK: Taylor and Francis, 2007: 59-81.
[10]GHAZAVI M, SAKHI M A. Influence of Optimized Tire Shreds on Shear Strength Parameters of Sand[J]. International Journal of Geomechanics, 2005, 5(1): 58-65.
[11]LEE C H, BYUN Y H, LEE J S. Behavior of Sand-rubber Mixtures According to Strain Level[C]//Proceedings of GeoFlorida 2010. Orlando, Florida, United States. February 20-24, 2010: 646-655.
[12]孔德森, 贾 腾, 王晓敏, 等. 废弃轮胎橡胶颗粒混合土无侧限抗压强度试验研究[J]. 中南大学学报(自然科学版), 2016, 47(1): 225-231.
[13]HAZARIKA H, YASUHARAM K, KIKUCHI Y, et al. Multifaceted Potentials of Tire-derived Three-dimensional Geosynthetics in Geotechnical Applications and Their Evaluation[J]. Geotextiles and Geomembranes, 2010, 28(3): 303-315.
[14]刘方成, 陈 璐, 王海东. 橡胶砂动剪模量和阻尼比循环单剪试验研究[J].岩土力学, 2016, 37(7): 1904-1913.
[15]尚守平, 岁小溪, 周志锦, 等. 橡胶颗粒-砂混合物动剪切模量的试验研究[J]. 岩土力学, 2010, 31(2): 377-381.
[16]李丽华, 肖衡林, 唐辉明, 等. 轮胎颗粒混合土动力特性参数影响规律试验研究[J]. 岩土力学, 2014, 35(2): 359-365.
[17]刘 娜, 刘方成, 张小强, 等. 三轴试验中橡胶-砂混合物泊松比计算方法研究[J]. 湖南工业大学学报, 2015, 29(6): 16-22.
[18]邓 安,冯金荣. 砂-轮胎橡胶颗粒轻质土工填料试验研究[J]. 建筑材料学报,2010, 34(2): 116-120.
[19]李朝辉, 张虎元. 废轮胎颗粒与黄土混合物压实性能研究[J]. 岩土力学, 2010, 31(12): 3715-3720.
[20]许婧伟, 胡志平, 马胜龙, 等. 重晶石粉和橡胶粉对重塑黄土抗剪强度的影响[J]. 西安科技大学学报, 2013, 33(5): 565-570.
[21]胡志平, 刘卓华, 张志权, 等. 橡胶粉对重塑黄土动力特性影响的试验[J]. 长安大学学报(自然科学版), 2013, 33(4): 62-67.
[22]李 勇. 废弃轮胎颗粒改性黏土衬垫性质研究[D]. 武汉:湖北工业大学, 2015.
[23]CETIN H,FENER M,GUNAYDIN O. Geotechnical Properties of Tire-cohesive Clayey Soil Mixtures as a Fill Material[J]. Engineering Geology,2006,88(1/2):110-120.
[24]李珊珊,李大勇.废旧轮胎橡胶颗粒与黏土混合土的剪切特性[J].raybet体育在线 院报,2017,34(7):99-105.
[25]LI S S, LI D Y. Mechanical Properties of Scrap Tire Crumbs-clayey Soil Mixtures Determined by Laboratory Tests[J]. Advances in Materials Science and Engineering, 2018: 1742676.
[26]张正甫, 刘松玉, 蔡光华, 等. 废旧轮胎在道路工程中的研究进展[J]. 土木工程学报, 2015, 48(增刊2): 361-368.
[27]GB/T 50123—1999,土工试验方法标准[S]. 北京:中国计划出版社, 1999.
[28]汤罗圣, 殷坤龙, 刘艺梁, 等. 滑坡残余强度预测[J].中南大学学报(自然科学版), 2013, 44(3): 1116-1121.
[29]刘 动,陈晓平.滑带土环剪剪切面的微观观测与分析[J].岩石力学与工程学报,2013,32(9):1827-1834.
[30]张仪萍, 俞亚楠, 张土乔, 等. 室内固结系数的一种推算方法[J]. 岩土工程学报, 2002, 24(5): 616-618.

基金

山东科技大学科研创新团队资助项目(2015TDJH104);潍坊学院博士科研启动基金(2019BS18)

PDF(3201 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map